精英家教网 > 高中数学 > 题目详情

【题目】已经函数的定义域为,设

(1)试确定的取值范围,使得函数上为单调函数

(2)求证

(3)若不等式(为正整数)对任意正实数恒成立,求的最大值.(解答过程可参考使用以下数据

【答案】(1) (2)6(3)见解析

【解析】试题分析:(1)求出函数导数,令,所以上递增,所以要使为单调函数,则;(2)由(1)知处取得权小值,又,所以的最小值为,从而当时, ,即;(3)等价于

,记,则,由导数知上单调递减,在上单调递增,所以 对任意正实数恒成立,等价于,即,再利用导数研究即可.

试题解析:

(1)因为

;令,得

所以上递增,在上递减

要使为单调函数,则

所以的取值范围为

(2)证:因为上递增,在上递减,

所以处取得权小值

,所以的最小值为

从而当时, ,即

(3)等价于

,则

所以上单调递减,在上单调递增

所以

对任意正实数恒成立,

等价于

,则

所以上单调递减,

所以的最大值为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆: ()的离心率为 分别是它的左、右焦点,且存在直线,使 关于的对称点恰好是圆 )的一条直径的两个端点.

(1)求椭圆的方程;

(2)设直线与抛物线相交于两点,射线与椭圆分别相交于.试探究:是否存在数集,当且仅当时,总存在,使点在以线段为直径的圆内?若存在,求出数集;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当为何值时, 轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的标准方程为 为抛物线上一动点, )为其对称轴上一点,直线与抛物线的另一个交点为.当为抛物线的焦点且直线与其对称轴垂直时, 的面积为18.

(1)求抛物线的标准方程;

(2)记,若值与点位置无关,则称此时的点为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的极值点,试研究函数的单调性,并求的极值;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的极值及单调区间;

(2)若在区间上至少存在一点,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)若两函数图象有两个不同的公共点,求实数的取值范围;

(2)若, ,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是函数的极值点.

(1)若,求函数的最小值;

(2)若不是单调函数,且无最小值,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 )的焦点是椭圆 )的右焦点,且两曲线有公共点

1)求椭圆的方程;

2)椭圆的左、右顶点分别为 ,若过点且斜率不为零的直线与椭圆交于两点,已知直线相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.

查看答案和解析>>

同步练习册答案