【题目】已知抛物线
:
(
)的焦点是椭圆
:
(
)的右焦点,且两曲线有公共点![]()
(1)求椭圆
的方程;
(2)椭圆
的左、右顶点分别为
,
,若过点
且斜率不为零的直线
与椭圆
交于
,
两点,已知直线
与
相较于点
,试判断点
是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.
【答案】(1)
(2) 点
在定直线
上
【解析】试题分析:(1)由条件易得:
,从而得到椭圆
的方程;
(2)先由特殊位置定出
,猜想点
在直线
上,由条件可得直线
的斜率存在, 设直线
,联立方程
,消
得:
有两个不等的实根,利用韦达定理转化条件即可.
试题解析:
(1)将
代入抛物线
得![]()
∴抛物线的焦点为
,则椭圆
中
,
又点
在椭圆
上,
∴
, 解得
,
椭圆
的方程为![]()
(2)方法一
当点
为椭圆的上顶点时,直线img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/5075df16/SYS201808071806350814512596_DA/SYS201808071806350814512596_DA.027.png" width="9" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />的方程为
,此时点
,
,则直线
和直线
,联立
,解得
,
当点
为椭圆的下顶点时,由对称性知:
.
猜想点
在直线
上,证明如下:
由条件可得直线
的斜率存在, 设直线
,
联立方程
,
消
得:
有两个不等的实根,
, ![]()
设
,则
, ![]()
则直线
与直线![]()
联立两直线方程得
(其中
为
点横坐标)
将
代入上述方程中可得
,
即
,
即证![]()
将
代入上式可得![]()
,此式成立
∴点
在定直线
上.
方法二
由条件可得直线
的斜率存在, 设直线![]()
联立方程
,
消
得:
有两个不等的实根,
, ![]()
设
,则
, ![]()
,
由
,
,
三点共线,有: ![]()
由
,
,
三点共线,有: ![]()
上两式相比得![]()
,
解得![]()
∴点
在定直线
上.
科目:高中数学 来源: 题型:
【题目】已经函数
的定义域为
,设![]()
(1)试确定
的取值范围,使得函数
在
上为单调函数
(2)求证![]()
(3)若不等式
(为
正整数)对任意正实数
恒成立,求
的最大值.(解答过程可参考使用以下数据
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,圆
,点
是圆上一动点,
的垂直平分线与线段
交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
且斜率不为0的直线
与
交于
两点,点
关于
轴的对称点为
,证明直线
过定点,并求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
是自然对数的底数)
(1)若直线
为曲线
的一条切线,求实数
的值;
(2)若函数
在区间
上为单调函数,求实数
的取值范围;
(3)设
,若
在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海产品经销商调查发现,该海产品每售出
吨可获利
万元,每积压
吨则亏损
万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.
![]()
(1)请补齐
上的频率分布直方图,并依据该图估计年需求量的平均数;
(2)今年该经销商欲进货
吨,以
(单位:吨,
)表示今年的年需求量,以
(单位:万元)表示今年销售的利润,试将
表示为
的函数解析式;并求今年的年利润不少于
万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,左、右焦点分别为
,且
与抛物线
的焦点重合.
(1)求椭圆的标准方程;
(2)若过
的直线交椭圆于
两点,过
的直线交椭圆于
两点,且
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了
名男生、
名女生进行为期一周的跟踪调查,调查结果如表所示:
平均每天使用手机超过 | 平均每天使用手机不超过 | 合计 | |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
(1)能否在犯错误的概率不超过
的前提下认为学生使用手机的时间长短与性别有关?
(2)在这
名女生中,调查小组发现共有
人使用国产手机,在这
人中,平均每天使用手机不超过
小时的共有
人.从平均每天使用手机超过
小时的女生中任意选取
人,求这
人中使用非国产手机的人数
的分布列和数学期望.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
(1)若曲线
在点
处的切线与直线
垂直,求函数的极值;
(2)设函数
.当
=
时,若区间[1,e]上存在x0,使得
,求实数
的取值范围.(
为自然对数底数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com