【题目】某海产品经销商调查发现,该海产品每售出吨可获利万元,每积压吨则亏损万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.
(1)请补齐上的频率分布直方图,并依据该图估计年需求量的平均数;
(2)今年该经销商欲进货吨,以(单位:吨, )表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示为的函数解析式;并求今年的年利润不少于万元的概率.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程为,以极点为平面直角坐标系的原点,极轴为的正半轴,建立平面直角坐标系.
(1)若曲线为参数)与曲线相交于两点,求;
(2)若是曲线上的动点,且点的直角坐标为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长.该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:
年份 | |||||
储蓄存款 (千亿元) |
为便于计算,工作人员将上表的数据进行了处理(令, ),得到下表:
时间 | |||||
储蓄存款 |
(Ⅰ)求关于的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出关于的回归方程;
(Ⅲ)用所求回归方程预测到年年底,该地储蓄存款额可达多少?
附:线性回归方程,其中, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知长方体,直线与平面所成角为垂直于点为的中点.
(1)求直线与平面所成角的正弦值;
(2)线段上是否存在点,使得二面角的余弦值为?若存在,确定点位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: ()的焦点是椭圆: ()的右焦点,且两曲线有公共点
(1)求椭圆的方程;
(2)椭圆的左、右顶点分别为, ,若过点且斜率不为零的直线与椭圆交于, 两点,已知直线与相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)写出曲线的普通方程和直线的直角坐标方程;
(2)设点,直线与曲线相交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了场, 各踢了场, 踢了场,且队与队未踢过, 队与队也未踢过,则在第一周的比赛中, 队踢的比赛的场数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,且点到椭圆上任意一点的最大距离为3,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)是否存在斜率为的直线与以线段为直径的圆相交于、两点,与椭圆相交于、,且?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com