【题目】在直角坐标系
中,曲线
的参数方程是
(
为参数),以该直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)写出曲线
的普通方程和直线
的直角坐标方程;
(2)设点
,直线
与曲线
相交于
两点,且
,求实数
的值.
科目:高中数学 来源: 题型:
【题目】解答
(1)设函数f(x)=|x﹣
|+|x﹣a|,x∈R,若关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值;
(2)已知正数x,y,z满足x+2y+3z=1,求
+
+
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a、b、c,且满足3asinC=4ccosA,
=3.
(1)求△ABC的面积S;
(2)若c=1,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测
株树苗的高度,经数据处理得到如图的频率分布直方图,起中最高的
株树苗高度的茎叶图如图所示,以这
株树苗的高度的频率估计整批树苗高度的概率.
(1)求这批树苗的高度高于
米的概率,并求图19-1中,
,
,
的值;
(2)若从这批树苗中随机选取
株,记
为高度在
的树苗数列,求
的分布列和数学期望.
(3)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布.如果这批树苗的高度满足近似于正态分布
的概率分布,则认为这批树苗是合格的,将顺利获得签收;否则,公司将拒绝签收.试问,该批树苗能否被签收?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱
中
,
为
的中点.
![]()
(1)求证:
;
(2)若点
为四边形
内部及其边界上的点,且三棱锥
的体积为三棱柱
体积的
,试在图中画出
点的轨迹,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数);以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)若把曲线
各点的横坐标伸长到原来的
倍,纵坐标变为原来的
,得到曲线
,求曲线
的方程;
(Ⅲ)设
为曲线
上的动点,求点
到曲线
上点的距离的最小值,并求此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)对任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.
(1)求证:f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com