【题目】已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.
(1)求椭圆的标准方程;
(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.
【答案】(1)椭圆的标准方程为;(2)的最小值为.
【解析】试题分析:(1)由题可知)抛物线的焦点为,所以,然后根据离心率可得a值,从而得出椭圆标准方程(2)根据题意则需求出AC和BD的长度表达式,显然可以根据直线与椭圆的弦长公式求得,所以设, ,直线的方程为,代入椭圆方程, ,同理求出AC的长度,然后化简即得 .
解析:
(1)抛物线的焦点为,所以,
又因为,所以,
所以,所以椭圆的标准方程为.
(2)(i)当直线的斜率存在且时,
直线的方程为,代入椭圆方程,
并化简得.
设, ,则, ,
.
易知的斜率为,
所以.
.
当,即时,上式取等号,故的最小值为.
(ii)当直线的斜率不存在或等于零时,易得.
综上, 的最小值为.
科目:高中数学 来源: 题型:
【题目】已知抛物线: ()的焦点是椭圆: ()的右焦点,且两曲线有公共点
(1)求椭圆的方程;
(2)椭圆的左、右顶点分别为, ,若过点且斜率不为零的直线与椭圆交于, 两点,已知直线与相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为, , 为椭圆的上顶点, 为等边三角形,且其面积为, 为椭圆的右顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆相交于两点(不是左、右顶点),且满足,试问:直线是否过定点?若过定点,求出该定点的坐标,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率,过且与轴垂直的直线与椭圆在第一象限内的交点为,且.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,当时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com