(本小题满分12分)如图,椭圆
上的点M与椭圆右焦点
的连线
与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.![]()
(1)求椭圆的离心率;
(2)过
且与AB垂直的直线交椭圆于P、Q,若
的面积是
,求此时椭圆的方程.
科目:高中数学 来源: 题型:解答题
如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:
上;
(2)设直线l:
与椭圆W:
有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求
的最大值及取得最大值时m的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知⊙O′过定点A(0,p)(p>0),圆心O′在抛物线C:x2=2py(p>0)上运动,MN为圆O′在x轴上所截得的弦.![]()
(1)当O′点运动时,|MN|是否有变化?并证明你的结论;
(2)当|OA|是|OM|与|ON|的等差中项时,试判断抛物线C的准线与圆O′的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若|AB|=1.![]()
(1)求点P的轨迹方程;
(2)求证:△MNP的面积为一个定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=
,|AF2|=
.![]()
(1)求曲线C1和C2的方程;
(2)设点C是C2上一点,若|CF1|=
|CF2|,求△CF1F2的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,已知抛物线
,过点
任作一直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
(
为坐标原点).![]()
(1)证明:动点
在定直线上;
(2)作
的任意一条切线
(不含
轴)与直线
相交于点
,与(1)中的定直线相交于点
,证明:
为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
的方程为
,定直线
的方程为
.动圆
与圆
外切,且与直线
相切.
(1)求动圆圆心
的轨迹
的方程;
(2)直线
与轨迹
相切于第一象限的点
, 过点
作直线
的垂线恰好经过点
,并交轨迹
于异于点
的点
,求直线
的方程及
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2=
,且△PF1F2的面积为2
,双曲线的离心率为2,求该双曲线的标准方程.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com