如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=
,|AF2|=
.![]()
(1)求曲线C1和C2的方程;
(2)设点C是C2上一点,若|CF1|=
|CF2|,求△CF1F2的面积.
科目:高中数学 来源: 题型:解答题
椭圆的对称中心在坐标原点,一个顶点为
,右焦点F与点
的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率
的直线
使直线
与椭圆相交于不同的两点M,N满足
,若存在,求直线l的方程;若不存在,说明理由。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,椭圆
上的点M与椭圆右焦点
的连线
与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.![]()
(1)求椭圆的离心率;
(2)过
且与AB垂直的直线交椭圆于P、Q,若
的面积是
,求此时椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设圆C与两圆(x+
)2+y2=4,(x-
)2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(
,
),F(
,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知线段
,
的中点为
,动点
满足
(
为正常数).
(1)建立适当的直角坐标系,求动点
所在的曲线方程;
(2)若
,动点
满足
,且
,试求
面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知点A
,椭圆E:
的离心率为
;F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点
(I)求E的方程;
(II)设过点A的动直线
与E 相交于P,Q两点。当
的面积最大时,求
的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为
时,
为正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直线
,且
和
有且只有一个公共点
,
(ⅰ)证明直线
过定点,并求出定点坐标;
(ⅱ)
的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的右焦点为
,离心率
,
是椭圆上的动点.
(1)求椭圆标准方程;
(2)若直线
与
的斜率乘积
,动点
满足
,(其中实数
为常数).问是否存在两个定点
,使得
?若存在,求
的坐标及
的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com