精英家教网 > 高中数学 > 题目详情

如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=,|AF2|=

(1)求曲线C1和C2的方程;
(2)设点C是C2上一点,若|CF1|=|CF2|,求△CF1F2的面积.

(1)曲线C1的方程为=1(-3≤x≤),曲线C2的方程为y2=4x(0≤x≤)
(2)2

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,过顶点的直线与椭圆相交于两点.
(1)求椭圆的方程;
(2)若点在椭圆上且满足,求直线的斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率 的直线使直线与椭圆相交于不同的两点M,N满足,若存在,求直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.

(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是 ,求此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆C与两圆(x+)2+y2=4,(x-)2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(),F(,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知线段的中点为,动点满足为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知点A,椭圆E:的离心率为;F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点
(I)求E的方程;
(II)设过点A的动直线与E 相交于P,Q两点。当的面积最大时,求的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直线,且有且只有一个公共点
(ⅰ)证明直线过定点,并求出定点坐标;
(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为,离心率,是椭圆上的动点.
(1)求椭圆标准方程;
(2)若直线的斜率乘积,动点满足,(其中实数为常数).问是否存在两个定点,使得?若存在,求的坐标及的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案