(本小题满分12分)
已知点A,椭圆E:的离心率为;F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点
(I)求E的方程;
(II)设过点A的动直线与E 相交于P,Q两点。当的面积最大时,求的直线方程.
(I);(II)或.
解析试题分析:(I)由直线AF的斜率为,可求.并结合求得,再利用求,进而可确定椭圆E的方程;(II)依题意直线的斜率存在,故可设直线方程为,和椭圆方程联立得.利用弦长公式表示,利用点到直线的距离求的高.从而三角形的面积可表示为关于变量的函数解析式,再求函数最大值及相应的值,故直线的方程确定.
试题解析:(I)设右焦点,由条件知,,得.
又,所以,.故椭圆的方程为.
(II)当轴时不合题意,故设直线,.
将代入得.当,即时,
.从而.又点到直线的距离
,所以的面积.设,则,.因为,当且仅当时,时取等号,且满足.所以,当的面积最大时,的方程为或.
【考点定位】1、椭圆的标准方程及简单几何性质;2、弦长公式;3、函数的最值.
科目:高中数学 来源: 题型:解答题
设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若|AB|=1.
(1)求点P的轨迹方程;
(2)求证:△MNP的面积为一个定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,曲线C1是以原点O为中心,F1,F2为焦点的椭圆的一部分.曲线C2是以O为顶点,F2为焦点的抛物线的一部分,A是曲线C1和C2的交点且∠AF2F1为钝角,若|AF1|=,|AF2|=.
(1)求曲线C1和C2的方程;
(2)设点C是C2上一点,若|CF1|=|CF2|,求△CF1F2的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,已知抛物线,过点任作一直线与相交于两点,过点作轴的平行线与直线相交于点(为坐标原点).
(1)证明:动点在定直线上;
(2)作的任意一条切线(不含轴)与直线相交于点,与(1)中的定直线相交于点,证明:为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左、右焦点分别为,,右顶点为A,上顶点为B.已知=.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点,经过点的直线与该圆相切与点M,=.求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的焦点在x轴上,左右顶点分别为,上顶点为B,抛物线分别以A,B为焦点,其顶点均为坐标原点O,与相交于直线上一点P.
(1)求椭圆C及抛物线的方程;
(2)若动直线与直线OP垂直,且与椭圆C交于不同的两点M,N,已知点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,且直线AB过点(0,-1),求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com