精英家教网 > 高中数学 > 题目详情

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

(I)求直方图中的值;

(II)求月平均用电量的众数和中位数;

(III)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

【答案】(I)(II)230,224(III)5

【解析】

试题分析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数

试题解析:I)由得:所以直方图中的值.

II)月平均用电量的众数是;月平均用电量的中位数是.

(III)月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,抽取比例,月平均用电量在的用户中应抽取户.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)五点法作出函数在一个周期内的简图;

(2)求出函数的最大值及取得最大值时的x的值;

(3)求出函数在上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的顶点为坐标原点O,焦点F在轴正半轴上,准线与圆相切.

)求抛物线的方程;

)已知直线和抛物线交于点,命题若直线过定点(0,1),则

请判断命题的真假,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数为常数, 的一个零点是,函数是自然对数的底数, 设函数

1过点坐标原点作曲线的切线, 证明切点的横坐标为

2,若函数在区间上是单调函数, 的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从在第一营区,从在第二营区,从在第三营区,则第一、第二、第三营区被抽中的人数分别为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其最小正周期为

1在区间上的减区间

2将函数图象上所有点的横坐标伸长到原来的2倍纵坐标不变,再将所得的图象向右平移个单位得到函数的图象若关于的方程在区间上有且只有一个实数根求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.

(1)求圆C的方程;

(2)若=2,求实数k的值;

(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若有穷数列是正整数),满足是正整数,且),就称该数列为“对称数列”。例如,数列与数列都是“对称数列”.

(1)已知数列是项数为9的对称数列,且,,,,成等差数列, ,试求 ,并求前9项和.

(2)若是项数为的对称数列,且构成首项为31,公差为的等差数列,数列项和为,则当为何值时, 取到最大值?最大值为多少?

(3)设项的“对称数列”,其中是首项为1,公比为2的等比数列.求项的和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1RtABCABC=60°BAC=90°ADBC边上的高沿AD将△ABC折成60°的二面角B-AD-C如图2.

(1)证明:平面ABD⊥平面BCD;

(2)EBC的中点BD=2求异面直线AEBD所成的角的大小

查看答案和解析>>

同步练习册答案