【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(I)求直方图中的值;
(II)求月平均用电量的众数和中位数;
(III)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
【答案】(I)(II)230,224(III)5
【解析】
试题分析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数
试题解析:(I)由得:所以直方图中的值.
(II)月平均用电量的众数是;月平均用电量的中位数是.
(III)月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,抽取比例,月平均用电量在的用户中应抽取户.
科目:高中数学 来源: 题型:
【题目】抛物线的顶点为坐标原点O,焦点F在轴正半轴上,准线与圆相切.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知直线和抛物线交于点,命题:“若直线过定点(0,1),则 ”,
请判断命题的真假,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数为常数, 的一个零点是,函数是自然对数的底数, 设函数.
(1)过点坐标原点作曲线的切线, 证明切点的横坐标为;
(2)令,若函数在区间上是单调函数, 求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从到在第一营区,从到在第二营区,从到在第三营区,则第一、第二、第三营区被抽中的人数分别为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(),其最小正周期为.
(1)求在区间上的减区间;
(2)将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移个单位,得到函数的图象,若关于的方程在区间上有且只有一个实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点A(﹣2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若=﹣2,求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若有穷数列(是正整数),满足即(是正整数,且),就称该数列为“对称数列”。例如,数列与数列都是“对称数列”.
(1)已知数列是项数为9的对称数列,且,,,,成等差数列, , ,试求, , , ,并求前9项和.
(2)若是项数为的对称数列,且构成首项为31,公差为的等差数列,数列前项和为,则当为何值时, 取到最大值?最大值为多少?
(3)设是项的“对称数列”,其中是首项为1,公比为2的等比数列.求前项的和 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC边上的高,沿AD将△ABC折成60°的二面角B-AD-C,如图2.
(1)证明:平面ABD⊥平面BCD;
(2)设E为BC的中点,BD=2,求异面直线AE与BD所成的角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com