【题目】抛物线
的顶点为坐标原点O,焦点F在
轴正半轴上,准线
与圆
相切.
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知直线
和抛物线
交于点
,命题
:“若直线
过定点(0,1),则
”,
请判断命题
的真假,并证明.
【答案】(Ⅰ)
(Ⅱ)命题P为真命题
【解析】
试题分析:(Ⅰ)设抛物线C的方程为:x2=2py,p>0,由已知条件得圆心(0,0)到直线l的距离
,由此能求出抛物线线C的方程;(Ⅱ)设直线m:y=kx+1,交点A
,B
联立抛物线C的方程
,得x2-4kx-4=0,△=16k2+16>0恒成立,由此利用韦达定理能证明命题P为真命题
试题解析:(Ⅰ)依题意,可设抛物线C的方程为:
,![]()
其准线
的方程为:![]()
∵准线
圆
相切 ∴
解得p=4
故抛物线线C的方程为:
………….…5分
(Ⅱ)命题p为真命题 ……………………………………6分
直线m和抛物线C交于A,B且过定点(0,1),
故所以直线m的斜率k一定存在,………………………7分
设直线m:
,交点![]()
,
,联立抛物线C的方程,![]()
得
,
恒成立,………8分
由韦达定理得
………………………………………9分
![]()
=![]()
![]()
∴命题P为真命题.………………………………………12分.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.
![]()
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
其中
是实数.设
为该函数图像上的两点,横坐标分别为
,且
.
(1求
的单调区间和极值;
(2)若
,函数
的图像在点
处的切线互相垂直,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:![]()
的一个焦点与抛物线
的焦点重合,点
在
上
(Ⅰ)求
的方程;
(Ⅱ)直线
不过原点O且不平行于坐标轴,
与
有两个交点
,线段
的中点为
,证明:
的斜率与直线
的斜率的乘积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,椭圆上的点
满足
,且
的面积为
.
(1)求椭圆
的方程;
(2)设椭圆
的左、右顶点分别为
、
,过点
的动直线
与椭圆
相交于
、
两点,直线
与直线
的交点为
,证明:点
总在直线
上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是不相邻的2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求
关于
的线性回归方程
;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(注:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
![]()
(I)求直方图中
的值;
(II)求月平均用电量的众数和中位数;
(III)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的方法抽取
户居民,则月平均用电量在
的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取
个作为样本,称出它们的重量(单位:克),重量分组区间为
,
,
,
,由此得到样本的重量频率分布直方图(如图).
![]()
(Ⅰ)求
的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(Ⅱ)从盒子中随机抽取
个小球,其中重量在
内的小球个数为
,求
的分布列和数学期望. (以直方图中的频率作为概率).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com