精英家教网 > 高中数学 > 题目详情
已知a,b均为正数,且a+b=1,证明:
(1)(ax+by)2≤ax2+by2
(2)(a+
1
a
2+(b+
1
b
2
25
2
考点:不等式的证明
专题:证明题
分析:(1)将所证的关系式作差(ax+by)2-(ax2+by2)=a(a-1)x2+b(b-1)y2+2abxy利用a+b=1,整理,可得a(a-1)x2+b(b-1)y2+2abxy=-ab(x-y)2≤0,当且仅当x=y时等号成立;
(2)将所证的不等式左端展开,转化为(a+
1
a
)2+(b+
1
b
)2=4+a 2+b2+(
1
a2
+
1
b2
)
,进一步整理后,利用基本不等式即可证得结论成立.
解答: 证明:(1))(ax+by)2-(ax2+by2)=a(a-1)x2+b(b-1)y2+2abxy,
因为a+b=1,
所以a-1=-b,b-1=-a,又a,b均为正数,
所以a(a-1)x2+b(b-1)y2+2abxy=-ab(x2+y2-2xy)=-ab(x-y)2≤0,当且仅当x=y时等号成立;
(2)(a+
1
a
)2+(b+
1
b
)2=4+a 2+b2+(
1
a2
+
1
b2
)

=4+a2+b2+
(a+b)2
a2
+
(a+b)2
b2
=4+a2+b2+1+
2b
a
+
b2
a2
+
a2
b2
+
2a
b
+1

=4+(a2+b2)+2+2(
b
a
+
a
b
)+(
b2
a2
+
a2
b2
)
≥4+
(a+b)2
2
+2+4+2=
25
2

当且仅当a=b时等号成立.
点评:本题考查不等式的证明,着重考查作差法的应用,突出考查等价转化思想与逻辑推理能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,并且函数y=
f(x)
的定义域为R,则
f(1)
f′(0)
的最小值为(  )
A、
5
2
B、
3
2
C、3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

从高三年级随机抽取100名学生,将他们的某次考试数学成绩绘制成频率分布直方图.由图中数据可知成绩在[130,140)内的学生人数为(  )
A、20B、25C、30D、35

查看答案和解析>>

科目:高中数学 来源: 题型:

某观察站B在城A的南偏西20°的方向,由A出发的一条公路的走向是南偏东25°,现在B处测得此公路上距B处30km的C处有一人正沿此公路骑车以40km/h的速度向A城驶去,行驶了15分钟后到达D处,此时测得B与D之间的距离为8
10
km,问这人还需要多长时间才能到达A城?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体中,四边形BB1C1C是矩形,BB1⊥平面ABC,CA=CB,A1B1∥AB,AB=2A1B1,E,F分别是AB,AC1的中点.
(Ⅰ)求证:EF∥平面BB1C1C;
(Ⅱ)求证:C1A1⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围;
(3)对于任意满足p=x0<x1<x2<…<xn-1<xn=q(n∈N*,n≥3)的自变量x0,x1,x2,…,xn,如果存在一个常数M>0,使得定义在区间[p,q]上的一个函数m(x),|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为区间[p,q]上的有界变差函数.试判断函数f(x)是否区间[1,3]上的有界变差函数,若是,求出M的最小值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.
(1)求证:AP∥平面BDE;
(2)求证:BE⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+x2-ax(a∈R).
(1)当a=0时,求与直线x-y-10=0平行,且与曲线y=f(x)相切的直线的方程;
(2)求函数g(x)=
f(x)
x
-alnx(x>1)的单调递增区间;
(3)如果存在a∈[3,9],使函数h(x)=f(x)+f′(x)(x∈[-3,b])在x=-3处取得最大值,试求b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn=2an-n(其中n∈N*).
(1)求证:数列{an+1}是等比数列,并求数列{an}的通项公式;
(2)若bn=
log2(an+1)
2n
,且Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

同步练习册答案