精英家教网 > 高中数学 > 题目详情
已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围;
(3)对于任意满足p=x0<x1<x2<…<xn-1<xn=q(n∈N*,n≥3)的自变量x0,x1,x2,…,xn,如果存在一个常数M>0,使得定义在区间[p,q]上的一个函数m(x),|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为区间[p,q]上的有界变差函数.试判断函数f(x)是否区间[1,3]上的有界变差函数,若是,求出M的最小值;若不是,请说明理由.
考点:利用导数研究函数的单调性,二次函数在闭区间上的最值
专题:导数的综合应用
分析:(1)由g(x)的对称轴x=1得g(x)在区间[2,3]上是增函数,得方程组求出a,b即可;(2)由(1)求出f(x)的表达式,解不等式求出即可;(3)由f(x)的表达式得f(x)为[1,3]上的单调递增函数,根据有界变差函数的概念求出即可.
解答: 解:(1)∵g(x)=a(x-1)2+1+b-a,
又a>0,∴g(x)在区间[2,3]上是增函数,
g(2)=1
g(3)=4

解得:a=1,b=0.  
(2)由(1)得:g(x)=x2-2x+1,
故f(x)=x2-2|x|+1是偶函数,
∴不等式f(
log
k
2
)>f(2)可化为|
log
k
2
|>2,
解得:k∈(0,
1
4
)∪(4,+∞).  
(3)∵f(x)=
x2-2x+1,    x≥1
x2+2x+1,   x<1

∴f(x)为[1,3]上的单调递增函数,
则对于任意满足1=x0<x1<x2<…<xn-1<xn=3(n∈N*,n≥3)的自变量x0,x1,x2,…,xn
有f(1)=f(x0)<f(x1)<f(x2)<…<f(xn-1)<f(xn)=f(3),
∴|f(x1)-f(x0)|+|f(x2)-f(x1)|+…+|f(xn)-f(xn-1)|
=f(x1)-f(x0)+f(x2)-f(x1)+…+f(xn)-f(xn-1
=f(xn)-f(xn-1
=f(3)-f(1)
=4,
∴存在常数M≥4,使得
|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M.  
函数f(x)为区间[1,3]上的有界变差函数.即M的最小值为4.
点评:本题考察了函数的性质,导数的应用,函数的单调性,新概念问题,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b是两条不同直线,α,β是两个不同平面,下列四个命题中正确的是(  )
A、若a,b与α所成的角相等,则a∥b
B、若a∥α,b∥β,α∥β,则a∥b
C、若a⊥α,b⊥β,α⊥β,则a⊥b
D、若a?α,b?β,a∥b,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x-y+1≥0
x+y≥0
x≤0
,则z=2x+2y的最小值是(  )
A、0
B、1
C、
3
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z与(z+2)2-8i都是纯虚数,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b均为正数,且a+b=1,证明:
(1)(ax+by)2≤ax2+by2
(2)(a+
1
a
2+(b+
1
b
2
25
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,对角线AC与BD相交于点E,平面PAC垂直于底面ABCD,线段PD的中点为F.
(1)求证:EF∥平面PBC;
(2)求证:BD⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在三棱锥P-ABC中,E、F分别为AC、BC的中点.
(1)求证:EF∥平面PAB;
(2)若PA=PB,CA=CB,求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正四棱锥P-ABCD的高为PO,PO=AB=2.E,F分别是棱PB,CD的中点,Q是棱PC上的点.
(1)求证:EF∥平面PAD;
(2)若PC⊥平面QDB,求PQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于⊙O,AB=AC,点D在⊙O上,AD⊥AB,AD交BC于点E,点F在DA的延长线上,AF=AE,求证:
(Ⅰ)BF是⊙O的切线;
(Ⅱ)BE2=AE•DF.

查看答案和解析>>

同步练习册答案