精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD的底面为菱形,对角线AC与BD相交于点E,平面PAC垂直于底面ABCD,线段PD的中点为F.
(1)求证:EF∥平面PBC;
(2)求证:BD⊥PC.
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)根据E,F为PD,DB的中点判断出EF为△PBD的中位线可知EF∥PB,进而根据EF?平面PBC,推断出EF平行于PB所在的平面PBC.
(2)先判断出BD⊥平面PAC,进而根据线面垂直的性质判断出BD⊥PC.
解答: (1)证明:∵菱形对角线AC与BD相交于点E,
∴AC与BD互相平分,即AE=CE,BE=DE
又∵线段PD的中点为F,
∴EF为△PBD的中位线,
∴EF∥PB
又EF?平面PBC,PB?平面PBC,
∴EF∥平面PBC
(2)证明:∵平面PAC⊥底面ABCD,平面PAC∩底面ABCD=AC,
菱形ABCD中,AC⊥BD,BD?平面ABCD,
∴BD⊥平面PAC,
∴BD⊥PC.
点评:本题主要考查了线面平行的判定,线面垂直的性质等知识.对线面平行的性质和判定定理即线面垂直性质和判定定理熟记于心,并能灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的体积是(  )
A、
32
3
B、64
C、
224
3
D、
229
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x-2≤0
x+y≥0
x-y≥0
,表示的平面区域为Ω,在区域Ω内任取一点P(x,y),则P点的坐标满足不等式x2+y2≤2的概率为(  )
A、
π
8
B、
π
4
C、
1
2+π
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an=Sn-1+n,a1=0,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围;
(3)对于任意满足p=x0<x1<x2<…<xn-1<xn=q(n∈N*,n≥3)的自变量x0,x1,x2,…,xn,如果存在一个常数M>0,使得定义在区间[p,q]上的一个函数m(x),|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为区间[p,q]上的有界变差函数.试判断函数f(x)是否区间[1,3]上的有界变差函数,若是,求出M的最小值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的体积是12πcm3,其侧面展开图是中心角为216°的扇形.
(1)求圆锥侧面积;
(2)若一个圆柱下底面在圆锥的底面上,上底面与圆锥面相切,求该圆柱侧面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用白铁皮做一个平底、圆锥形盖的圆柱形粮囤,粮囤容积为(8+8
2
)πm3(不含锥形盖内空间),盖子的母线与底面圆半径的夹角为45°,设粮囤的底面圆半径为Rm,需用白铁皮的面积记为S(R)m2(不计接头等).
(1)将S(R)表示为R的函数;
(2)求S(R)的最小值及对应的粮囤的总高度.(含圆锥顶盖)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln|x+1|-ax2
(Ⅰ)若a=
2
3
且函数f(x)的定义域为(-1,+∞),求函数f(x)的单调递增区间;
(Ⅱ)若a=0,求证f(x)≤|x+1|-1;
(Ⅲ)若函数y=f(x)的图象在原点O处的切线为l,试探究:是否存在实数a,使得函数y=f(x)的图象上存在点在直线l的上方?若存在,试求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆M和圆P:x2+y2-2
2
x-10=0相内切,且过定点Q(-
2
,0).
(Ⅰ)求动圆圆心M的轨迹方程;
(Ⅱ)斜率为
3
的直线l与动圆圆心M的轨迹交于A、B两点,且线段AB的垂直平分线经过点(0,-
1
2
),求直线l的方程.

查看答案和解析>>

同步练习册答案