精英家教网 > 高中数学 > 题目详情
圆M和圆P:x2+y2-2
2
x-10=0相内切,且过定点Q(-
2
,0).
(Ⅰ)求动圆圆心M的轨迹方程;
(Ⅱ)斜率为
3
的直线l与动圆圆心M的轨迹交于A、B两点,且线段AB的垂直平分线经过点(0,-
1
2
),求直线l的方程.
考点:直线和圆的方程的应用
专题:综合题
分析:(Ⅰ)依题意,不难得到|MP|+|MQ|=2
3
,且2
3
大于|PQ|,转化为椭圆定义,求出动圆圆心M的轨迹E的方程.
(Ⅱ)设直线l的方程,代入椭圆方程,求出AB的中点,可得AB的垂直平分线方程,将(0,-
1
2
)代入,即可求直线l的方程.
解答: 解:(I)由已知|MP|=2
3
-|MQ|,即|MP|+|MQ|=2
3
,且2
3
大于|PQ|…(3分)
所以M的轨迹是以P,Q为焦点,2
3
为长轴长的椭圆,即其方程为
x2
3
+y2=1
;       …(5分)
(II)设直线l的方程为y=
3
x+m,A(x1,y1),B(x2,y2),则
直线l的方程代入椭圆方程得10x2+6
3
mx+3m2-3=0…(6分)
∴x1+x2=-
3
3
5
m                                       …(7分)
∴AB的中点(-
3
3
10
m,
m
10
)                               …(8分)
∴AB的垂直平分线方程为y-
m
10
=-
3
3
(x+
3
3
10
m)          …(9分)
将(0,-
1
2
)代入得m=
5
6
                                  …(11分)
∴直线l的方程为y=
3
x+
5
6
.                           …(12分)
点评:本题考查圆与圆的位置关系,直线与椭圆的位置关系,椭圆的定义,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,对角线AC与BD相交于点E,平面PAC垂直于底面ABCD,线段PD的中点为F.
(1)求证:EF∥平面PBC;
(2)求证:BD⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,求f(x)=sin2x+1+
5
sin2x+1
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx-xcosx的导函数为f′(x).
(1)求证:f(x)在(0,π)上为增函数;
(2)若存在x∈(0,π),使得f′(x)>
1
2
x2+λx成立,求实数λ的取值范围;
(3)设F(x)=f′(x)+2cosx,曲线y=F(x)上存在不同的三点A(x1,y1),B(x2,y2),C(x3,y3),x1<x2<x3,且x1,x2,x3∈(0,π),比较直线AB的斜率与直线BC的斜率的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于⊙O,AB=AC,点D在⊙O上,AD⊥AB,AD交BC于点E,点F在DA的延长线上,AF=AE,求证:
(Ⅰ)BF是⊙O的切线;
(Ⅱ)BE2=AE•DF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB,CE交⊙O于点G.
(Ⅰ)证明:AC2=AD•AE;
(Ⅱ)证明:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了迎接青奥会,南京将在主干道统一安装某种新型节能路灯,该路灯由灯柱和支架组成.在如图所示的直角坐标系中,支架ACB是抛物线y2=2x的一部分,灯柱CD经过该抛物线的焦点F且与路面垂直,其中C在抛物线上,B为抛物线的顶点,DH表示道路路面,BF∥DH,A为锥形灯罩的顶,灯罩轴线与抛物线在A处的切线垂直.安装时要求锥形灯罩的顶到灯柱的距离是1.5米,灯罩的轴线正好通过道路路面的中线.
(1)求灯罩轴线所在的直线方程;
(2)若路宽为10米,求灯柱的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-1|+|2x-1|>a恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知任意角θ以x轴为始边,若终边经过点P(x0,y0)且|OP|=r(r>0).定义:sicosθ=
y0-x0
r
,称“sicosθ”为“正余弦函数”.对于正余弦函数y=sicosx,有同学得到以下结论:
①该函数的值域为[-
2
2
];
②该函数图象关于原点对称;
③该函数图象关于直线x=
4
对称;
④该函数的单调递增区间为[2kπ-
π
4
,2kπ+
4
],(k∈z).
则这些结论中正确的序号为
 

查看答案和解析>>

同步练习册答案