精英家教网 > 高中数学 > 题目详情
设a,b是两条不同直线,α,β是两个不同平面,下列四个命题中正确的是(  )
A、若a,b与α所成的角相等,则a∥b
B、若a∥α,b∥β,α∥β,则a∥b
C、若a⊥α,b⊥β,α⊥β,则a⊥b
D、若a?α,b?β,a∥b,则α∥β
考点:命题的真假判断与应用,空间中直线与平面之间的位置关系
专题:综合题,空间位置关系与距离
分析:对四个选项中的命题依据相关的立体几何知识逐一判断即可
解答: 解:对于选项A,将一个圆锥放到平面上,则它的每条母线与平面所成的角都是相等的,故“若a,b与α所成的角相等,则a∥b“错;
对于选项B,若a∥α,b∥β,α∥β,则a与b位置关系可能是平行,相交或异面,故B错;
对于选项C,若a⊥α,b⊥β,α⊥β,则a⊥b是正确的,两个平面垂直时,与它们垂直的两个方向一定是垂直的;
对于选项D,由面面平行的定理知,一个面中两条相交线分别平行于另一个平面中的两条线才能得出面面平行,故D错.
故选C.
点评:本题以立体几何中线面位置关系为题面考查了命题真假的判断,熟练掌握空间中点线面的位置关系是解答的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角α的终边经过点P(-5,12),则sin(-π-α)-2cos(π-α)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于下列结论:
(1)平面内到两定点A(-2,0)和B(2,0)距离之和为4的点M的轨迹是椭圆;
(2)平面内与一个定点A(1,3)和一条定直线l:2x+3y-11=0距离相等的点M的轨迹是抛物线;
(3)在平面直角坐标系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表示的曲线为椭圆,则实数m的取值范围是(
5
,+∞);
(4)若不等式ax2+bx+c>0的解集是{x|-4<x<1},则不等式b(x2-1)+a(x+3)+c>0的解集为{x|-
4
3
<x<1};
(5)已知数列{an}满足a1=33,an+1-an=2n,则
an
n
的最小值为
21
2
. 
其中正确的是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x2-x-2≤0},N={x|x-a<0},若M∩N≠∅,则a的范围为(  )
A、(-1,+∞)
B、[-1,+∞)
C、(-∞,2]
D、(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,并且函数y=
f(x)
的定义域为R,则
f(1)
f′(0)
的最小值为(  )
A、
5
2
B、
3
2
C、3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的体积是(  )
A、
32
3
B、64
C、
224
3
D、
229
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-sin2x-3cosx+3的最小值是(  )
A、2
B、0
C、
1
4
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x1、x2是函数f(x)=
ex
x
-3的两个零点,若a<x1<x2,则f(a)的值是(  )
A、f(a)=0
B、f(a)>0
C、f(a)<0
D、f(a)的符号不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|).
(1)求实数a,b的值;
(2)若不等式f(log2k)>f(2)成立,求实数k的取值范围;
(3)对于任意满足p=x0<x1<x2<…<xn-1<xn=q(n∈N*,n≥3)的自变量x0,x1,x2,…,xn,如果存在一个常数M>0,使得定义在区间[p,q]上的一个函数m(x),|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,则称函数m(x)为区间[p,q]上的有界变差函数.试判断函数f(x)是否区间[1,3]上的有界变差函数,若是,求出M的最小值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案