精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12)

已知关于的不等式,其中.

1)当变化时,试求不等式的解集

2)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若 能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.

【答案】时,;当时,

时,;(不单独分析时的情况不扣分)

时,

【解析】

解:()当时,…………………2

时,

时,;(不单独分析时的情况不扣分)………………4

时,. …………………6

)由(1)知:当时,集合中的元素的个数无限; …………………8

时,集合中的元素的个数有限,此时集合为有限集.

因为,当且仅当时取等号,

所以当时,集合的元素个数最少. …………………10

此时,故集合. …………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆)的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为,一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为

(1)求椭圆和双曲线的标准方程;

(2)设直线的斜率分别为,证明为定值;

(3)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】右图是一个几何体的平面展开图,其中ABCD

正方形, EF分别为PAPD的中点,在此几何体中,

给出下面四个结论:

直线BE与直线CF异面;直线BE与直线AF异面;

直线EF//平面PBC平面BCE平面PAD.

其中正确结论的个数是

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ﹣2lnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求a的取值范围;
(3)在(2)的条件下,证明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:

学生序号

1

2

3

4

5

6

7

物理成绩

65

70

75

81

85

87

93

化学成绩

72

68

80

85

90

86

91

规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%,今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为(
A.20% 369
B.80% 369
C.40% 360
D.60% 365

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是线段BF上一点,AB=AF=BC.
(Ⅰ)若EG∥平面ABC,求 的值;
(Ⅱ)求二面角A﹣BF﹣E的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,点O为数轴的原点,ABM为数轴上三点,C为线段OM上的动点.设x表示点C与原点的距离,y表示点C到点A的距离的4倍与点C到点B的距离的6倍之和.

(1)将y表示为x的函数;

(2)要使y的值不超过70,实数x应该在什么范围内取值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,双曲线E的参数方程为 (θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l的极坐标方程;
(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.

查看答案和解析>>

同步练习册答案