已知圆C的圆心在坐标原点,且与直线
相切
(1)求直线
被圆C所截得的弦AB的长.
(2)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N求直线MN的方程
(3)若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.
(1)
;(2)
;(3)
,且![]()
解析试题分析:(1)先由点到直线距离公式求出原点到直线
的距离即为圆C的半径,再写出圆C的方程;(2)先求出以G为圆心|GM|的方程,圆G的方程与圆C方程相减就是其公共弦MN所在的直线方程;(3)先根据直线
的方程求出
的斜率,由直线
⊥
,求出
的斜率,设出
的斜截式方程,将直线
方程与圆C方程联立,消去y化为关于x的方程,设出
,根据韦达定理将
,
用直线
在y轴上截距b表示,由判别式大于0得到关于b的不等式,将∠POQ为钝角转化为
,利用数量积的坐标运算,再列出关于b的不等式,这两个不等式联立就解出b的取值范围.
试题解析:(1)由题意得:圆心
到直线
的距离为圆的半径,
,所以圆
的标准方程为:
2分
所以圆心到直线
的距离
3分
4分
(2)因为点
,所以
,![]()
所以以
点为圆心,线段
长为半径的圆
方程:
(1)
又圆
方程为:
(2),由
得直线
方程:
8分
(3)设直线
的方程为:![]()
联立
得:
,
设直线
与圆的交点
,
由
,得
,
(3) 10分
因为
为钝角,所以
,
即满足
,且
与
不是反向共线,
又
,所以
(4)
由(3)(4)得
,满足
,即
, 12分
当
与
反向共线时,直线
过原点,此时
,不满足题意,
故直线
纵截距的取值范围是
,且
14分
考点:点的直线的距离公司;圆的标准方程;圆与圆的位置关系;直线与圆的位置关系;设而不求思想
科目:高中数学 来源: 题型:解答题
已知圆
关于直线
对称,圆心
在第二象限,半径为
.
(1)求圆
的方程;
(2)是否存在直线
与圆
相切,且在
轴、
轴上的截距相等?若存在,求直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),
.以
所在直线为
轴,以
所在直线为
轴建立平面直角坐标系.
(Ⅰ)求
所在直线的方程及新桥BC的长;
(Ⅱ)当OM多长时,圆形保护区的面积最大?
并求此时圆的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C过点P(1,1),且与圆M:(x+2)2+(x+2)2=r2(r>0)2关于直线x+y+2=0对称.
⑴求圆C的方程;
⑵设Q为圆C上的一个动点,求
的最小值;
⑶过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com