精英家教网 > 高中数学 > 题目详情
6.关于函数y=$\sqrt{x+1}$-$\sqrt{x-1}$的最值的说法正确的是(  )
A.既没有最大值也没有最小值B.没有最小值,只有最大值$\sqrt{2}$
C.没有最大值,只有最小值$\sqrt{2}$D.既有最小值0,又有最大值$\sqrt{2}$

分析 利用y=$\sqrt{x+1}$-$\sqrt{x-1}$=$\frac{2}{\sqrt{x+1}+\sqrt{x-1}}$在[1,+∞)上是减函数,即可得出结论.

解答 解:由题意,函数的定义域为{x|x≥1},
y=$\sqrt{x+1}$-$\sqrt{x-1}$=$\frac{2}{\sqrt{x+1}+\sqrt{x-1}}$在[1,+∞)上是减函数,
∴x=1时,ymax=$\sqrt{2}$,
故选:B.

点评 本题考查函数的单调性与最值,考查学生的计算能力,确定函数的单调性是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{\begin{array}{l}{{3}^{-x}-2(x≤0)}\\{x-1(x>0)}\end{array}\right.$,若f(x0)>1,则x0的取值范围是(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a=20.6,b=log30.6,c=0.62,则(  )
A.b>c>aB.a>b>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个与正整数有关的命题:“如果当n=k(k∈N+且k≥1)时命题成立,那么一定可推得当n=k+1时命题也成立.”现已知当n=10时命题不成立,那么可推得(  )
A.当n=11时命题不成立B.当n=11时命题成立
C.当n=9时命题不成立D.当n=9时命题成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆O:x2+y2=1及以下3个函数:①f(x)=xcosx;②f(x)=tanx;③f(x)=xsinx.其中图象能等分圆O面积的函数有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的前n项和为Sn,a4=7且4Sn=n(an+an+1),则Sn-8an的最小值为-56.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量,则下列结论中正确的是(  )  )
A.$\overrightarrow{a}$=$\overrightarrow{b}$B.$\overrightarrow{a}$•$\overrightarrow{b}$=1C.$\overrightarrow{{a}^{2}}$≠$\overrightarrow{{b}^{2}}$D.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,a1+a2+a3+…+an=n2+2(n∈N*),则an=$\left\{\begin{array}{l}{3,n=1}\\{2n-1,n≥2}\end{array}\right.$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:y=k(x-2)与抛物线C:y2=8x交于A,B两点,点M(-2,4)满足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,则|AB|=(  )
A.6B.8C.10D.16

查看答案和解析>>

同步练习册答案