精英家教网 > 高中数学 > 题目详情
11.已知数列{an}的前n项和为Sn,a4=7且4Sn=n(an+an+1),则Sn-8an的最小值为-56.

分析 4S3=3(a3+a4)=3(a3+7),4S2=2(a2+a3),4S1=4a1=a1+a2,解得:a1=1,a2=3,a3=5,a4=7,…,可得an=2n-1,Sn.代入4Sn=n(an+an+1)验证成立,利用二次函数的单调性即可得出.

解答 解:∵4S3=3(a3+a4)=3(a3+7),
4S2=2(a2+a3),4S1=4a1=a1+a2
解得:a1=1,a2=3,a3=5,a4=7,…,∴an=2n-1.
可得Sn=$\frac{n(2n-1+1)}{2}$=n2.代入4Sn=n(an+an+1)验证成立,
∴Sn-8an=n2-8(2n-1)=(n-8)2-56,∴当n=8时,Sn-8an取得最小值-56.
故答案为:-56.

点评 本题考查了等差数列的通项公式与求和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若x,y满足$\left\{\begin{array}{l}{y≤1}\\{x-y-1≤0}\\{x+y-1≥0}\end{array}\right.$,则z=$\sqrt{3}$x+y的最大值为2$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x+a|-|x-2|.
(1)当a=1时,求不等式f(x)≥2的解集;
(2)若f(x)≤|x-4|的解集包含[2,3],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若tanθ+$\frac{1}{tanθ}$=6,则sin2θ=(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于函数y=$\sqrt{x+1}$-$\sqrt{x-1}$的最值的说法正确的是(  )
A.既没有最大值也没有最小值B.没有最小值,只有最大值$\sqrt{2}$
C.没有最大值,只有最小值$\sqrt{2}$D.既有最小值0,又有最大值$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.记函数的f(x)=$\sqrt{{x}^{2}-1}$定义域为A,不等式(x-a-1)(2a-x)>0的解集为B.
(1)求A;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为了得到函数y=sin(x-$\frac{π}{3}$)+1的图象,只需将函数y=sinx图象上所有的点(  )
A.向左平行移动$\frac{π}{3}$个单位长度,再向上平行平移1个单位长度
B.向左平行移动$\frac{π}{3}$个单位长度,再向下平行平移1个单位长度
C.向右平行移动$\frac{π}{3}$个单位长度,再向下平行平移1个单位长度
D.向右平行移动$\frac{π}{3}$个单位长度,再向上平行平移1个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,设AB=x,求△ADP的最大面积及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=acosx+bcos2x+1.
(1)当b=1,a=1时,求函数f(x)的值域;
(2)若a=1,对任意的实数x函数f(x)≥0恒成立,求实数b的取值范围;
(3)若b=1,存在实数x使得函数|f(x)|≥a2成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案