分析 (1)当n=1时,a1=S1=-11,当n≥2时,an=Sn-Sn-1,由此求出通项公式an;
(2)求得cn=$(\frac{1}{2})^{n}$•(4n-15),利用错位相减法求出数列{cn}的前n项和Tn.
解答 解:(1)①当n=1时,a1=S1=-11,
②当n≥2时,an=Sn-Sn-1=2n2-13n-[2(n-1)2-13(n-1)]=4n-15,
n=1时,也适合上式.
∴an=4n-15.
(2)cn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{4n-15}{{2}^{n}}$=$(\frac{1}{2})^{n}$•(4n-15),
∴Tn=$(\frac{1}{2})^{1}•(4-15)$+$(\frac{1}{2})^{2}•(4×2-15)$+$(\frac{1}{2})^{3}•(4×3-15)$+…+$(\frac{1}{2})^{n}$•(4n-15),①
$\frac{1}{2}{T}_{n}$=$(\frac{1}{2})^{2}•(4-15)$+$(\frac{1}{2})^{3}•(4×2-15)$+…+$(\frac{1}{2})^{n}•[4(n-1)-15]$+$(\frac{1}{2})^{n+1}•(4n-15)$②
①-②,得:$\frac{1}{2}$Tn=-$\frac{11}{2}$+4($\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n}}$)-(4n-15)•($\frac{1}{2}$)n+1
=-$\frac{11}{2}$+4•$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(4n-15)•($\frac{1}{2}$)n+1
=-$\frac{7}{2}$-$(\frac{1}{2})^{n-2}-(\frac{1}{2})^{n+1}(4n-15)$,
∴Tn=-7-$(\frac{1}{2})^{n}(4n-7)$.
点评 本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{12}{5}$ | B. | $\frac{24}{5}$ | C. | $\frac{8}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 18 | C. | 16 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 做不到光盘 | 能做到光盘 | 合计 | |
| 男 | 45 | 10 | 55 |
| 女 | x | y | 45 |
| 合计 | 75 | m | 100 |
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com