精英家教网 > 高中数学 > 题目详情
12.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若复数x=$\frac{1-i}{1+i}$,y=$|\begin{array}{l}{4i}&{3-xi}\\{1+i}&{x+i}\end{array}|$,则y=-2-2i.

分析 利用复数代数形式的除法运算化简x,代入y=$|\begin{array}{l}{4i}&{3-xi}\\{1+i}&{x+i}\end{array}|$后直接利用定义得答案.

解答 解:x=$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}=\frac{-2i}{2}=-i$,
由定义可知,
y=$|\begin{array}{l}{4i}&{3-xi}\\{1+i}&{x+i}\end{array}|$=4xi-4-(3+3i-xi+x)=5xi-7-3i-x=-2-2i.
故答案为:-2-2i.

点评 本题考查了复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,在复平面内,复数z1,z2对应的向量分别为$\overrightarrow{OA}$,$\overrightarrow{OB}$,则复数$\overline{z_1}$+2z2=(  )?
A.-2+iB.-2+3iC.1+2iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=(  )
A.-1B.31C.-33D.-31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和sn满足Sn=2n2-13n(n∈N*).
(1)求通项公式an
(2)令cn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别是角A,B,C的对边,且$\sqrt{3}$asinB-bcosA=b,
(1)求∠A的大小;
(2)若b+c=4,当a取最小值时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b,c均为实数,下面命题正确的是(  )
A.$\frac{a}{b}$>c⇒a>bcB.ac2>bc2⇒a>bC.$\frac{a}{c^2}$>$\frac{b}{c^2}$⇒3a<3bD.a>b⇒|c|a>|c|b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\int_{-a}^a{(xcosx+5sinx)}$dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列-1,1,-$\frac{9}{5}$,$\frac{27}{7}$,…的一个通项公式为an=(-1)n•$\frac{{3}^{n-1}}{2n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线$\sqrt{3}$x+y-2$\sqrt{3}$=0和圆x2+y2=4相交,求弦长?
(必须自己画图,草图即可,需要的字母自己标示,无图者扣分)

查看答案和解析>>

同步练习册答案