分析 ( )1)由题意和正弦定理可得sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,结合三角形内角的范围可得角A;
(2)由余弦定理可得a2=4-3bc,再由已知式子和基本不等式可得bc的范围,可得此时边长,可得三角形的面积.
解答 解:(1)在△ABC中,a,b,c分别是角A,B,C的对边,且$\sqrt{3}$asinB-bcosA=b,
由正弦定理可得$\sqrt{3}$sinAsinB-sinBcosA=sinB,∵sinB≠0,∴$\sqrt{3}$sinA-cosA=1,
即2sin(A-$\frac{π}{6}$)=1,∴sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,结合A的范围可得A-$\frac{π}{6}$=$\frac{π}{6}$,∴A=$\frac{π}{3}$.
(2)由余弦定理可得a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc=16-3bc,
由基本不等式可得bc≤($\frac{b+c}{2}$)2=4,当且仅当b=c=2时取等号,
故-bc≥-4,∴-3bc≥-12,故a2=16-3bc≥4,
∴a的最小值为2,此时△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$•4•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
点评 本题考查正余弦定理解三角形,涉及基本不等式求最值和和差角的三角函数公式,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60R | B. | $\frac{π}{6}$R | C. | $\frac{1}{3}$R | D. | $\frac{π}{3}$R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-2,0)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2<b2 | B. | ab2<a2b | C. | $\frac{1}{a{b}^{2}}$<$\frac{1}{{a}^{2}b}$ | D. | $\frac{1}{a}$>$\frac{1}{b}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com