精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{x+{a}^{x+2},-1≤x<0}\\{bx-1,0≤x≤1}\end{array}\right.$,其中a>0且a≠1,若f(-1)=f(1),则logab=(  )
A.-1B.0C.1D.2

分析 由已知得-1+a=b-1,从而a=b,由此能求出logab的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{x+{a}^{x+2},-1≤x<0}\\{bx-1,0≤x≤1}\end{array}\right.$,
其中a>0且a≠1,f(-1)=f(1),
∴-1+a=b-1,∴a=b,
∴logab=1.
故选:C.

点评 本题考查对数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,A=$\frac{π}{4}$,cosB=$\frac{4}{5}$.
(Ⅰ)求cosC的值;
(Ⅱ)若c=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点A(1,-1)与B(-1,1)且半径为2的圆的方程为(  )
A.(x-3)2+(y+1)2=4B.(x-1)2+(y-1)2=4或(x+1)2+(y+1)2=4
C.(x+3)2+(y-1)2=4D.(x+1)2+(y-1)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=cos2x-$\sqrt{3}$sinxcosx+1.
(1)求函数f(x)的周期,并求f(x)的单调递增区间;
(2)若f(θ)=$\frac{5}{6}$,且 $\frac{π}{3}$<θ<$\frac{2π}{3}$,求sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在等差数列{an}中,若a3和a8是方程x2-6x+5=0的两根,则a5+a6的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在复平面内,复数z1,z2对应的向量分别为$\overrightarrow{OA}$,$\overrightarrow{OB}$,则复数$\overline{z_1}$+2z2=(  )?
A.-2+iB.-2+3iC.1+2iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正实数a,b满足a+2b=1,则$\frac{1}{a}$+$\frac{a}{b}$的最小值为(  )
A.1+2$\sqrt{2}$B.1+$\sqrt{2}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(z)=$\overline{z}$,且z1=1+5i,z2=-3+2i,则f($\overline{{z}_{1}-{z}_{2}}$)的值是4+3i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别是角A,B,C的对边,且$\sqrt{3}$asinB-bcosA=b,
(1)求∠A的大小;
(2)若b+c=4,当a取最小值时,求△ABC的面积.

查看答案和解析>>

同步练习册答案