| A. | 1+2$\sqrt{2}$ | B. | 1+$\sqrt{2}$ | C. | 4 | D. | 2$\sqrt{2}$ |
分析 由正实数a,b满足a+2b=1,代入$\frac{1}{a}$+$\frac{a}{b}$=$\frac{a+2b}{a}$+$\frac{a}{b}$=1+$\frac{2b}{a}$+$\frac{a}{b}$,再利用基本不等式的性质即可得出.
解答 解:∵正实数a,b满足a+2b=1,
则$\frac{1}{a}$+$\frac{a}{b}$=$\frac{a+2b}{a}$+$\frac{a}{b}$=1+$\frac{2b}{a}$+$\frac{a}{b}$≥1+2$\sqrt{\frac{2b}{a}•\frac{a}{b}}$=1+2$\sqrt{2}$,当且仅当a=$\sqrt{2}$b=$\sqrt{2}$-1时取等号.
故选:A.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(μ-σ<X≤μ+σ)=0.6826 P(μ-2σ<X≤μ+2σ)=0.9544 P(μ-3σ<X≤μ+3σ)=0.9974 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60R | B. | $\frac{π}{6}$R | C. | $\frac{1}{3}$R | D. | $\frac{π}{3}$R |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com