精英家教网 > 高中数学 > 题目详情
2.如图,在复平面内,复数z1,z2对应的向量分别为$\overrightarrow{OA}$,$\overrightarrow{OB}$,则复数$\overline{z_1}$+2z2=(  )?
A.-2+iB.-2+3iC.1+2iD.-1

分析 由z1,z2求出$\overline{{z}_{1}}$然后代入复数$\overline{z_1}$+2z2计算得答案.

解答 解:∵z1=-2-i,z2=i,
∴$\overline{{z}_{1}}=-2+i$.
则复数$\overline{z_1}$+2z2=-2+i+2i=-2+3i.
故选:B.

点评 本题考查了复数代数形式的加减运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设集合A={0,1,2,3},B={1,2,3},则A∩B=(  )
A.{0,1,2,3}B.{0,3}C.{1,2,3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若关于x的不等式4x<log2ax(a>0,且a≠$\frac{1}{2}$)的解集是{x|0<x<$\frac{1}{2}$},则a的取值的集合是$\left\{{\frac{{\sqrt{2}}}{4}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an},a3=6,a5=10,则S7=(  )
A.60B.56C.40D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{x+{a}^{x+2},-1≤x<0}\\{bx-1,0≤x≤1}\end{array}\right.$,其中a>0且a≠1,若f(-1)=f(1),则logab=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线ax-by=1(a>0,b>0)过点(1,-1),则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.3B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线y=k(x+2)-1恒过定点A,且点A在直线$\frac{1}{m}$x+$\frac{1}{n}$y+8=0(m>0,n>0)上,则2m+n的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an},若a1=2,an+1+an=2n-1,则a2016=(  )
A.2011B.2012C.2013D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若复数x=$\frac{1-i}{1+i}$,y=$|\begin{array}{l}{4i}&{3-xi}\\{1+i}&{x+i}\end{array}|$,则y=-2-2i.

查看答案和解析>>

同步练习册答案