精英家教网 > 高中数学 > 题目详情

【题目】已知函数)为奇函数,且相邻两对称轴间的距离为.

(1)当时,求的单调递减区间;

(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

【答案】(1) ;(2) .

【解析】试题分析:(1)由题意,化简得到根据相邻量对称轴间的距离求得函数的最小正周期,进而得到的值,根据奇函数,求解,得到函数的解析式,进而求解函数的单调区间即可;

(2)根据三角函数的图象变换得到的解析式,根据题意求解

的取值范围,即可求解函数的值域.

试题解析:

(1)由题意可得:

因为相邻量对称轴间的距离为,所以

因为函数为奇函数,所以

因为,所以,函数

要使单调减,需满足

所以函数的减区间为

(2)由题意可得:

即函数的值域为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修45:不等式选讲

已知函数fx=|2x-a|+a.

1若不等式fx6的解集为{x|-2x3},求实数a的值;

21的条件下,若存在实数n使fnm-f-n成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列问题中符合调查问卷要求的是(

A.你们单位有几个高个子?

B.您对我们厂生产的电视机满意吗?

C.您的体重是多少千克?

D.很多顾客都认为该产品的质量很好,您不这么认为吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-1《几何证明选讲》

已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点

1)求证:BD平分∠ABC;

2)若AB=4,AD=6,BD=8,求AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

)求在未来4年中,至多1年的年入流量超过120的概率;

)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系;

年入流量

发电机最多可运行台数

1

2

3

若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】p-1x<2qx<a,若qp的必要条件,则a的取值范围是(

A.a≤-1B.a≤-1a2C.a≥2D.-1≤a<2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻落实教育部等部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,普及足球知识和技能,市教体局决定举行春季校园足球联赛,为迎接此次联赛,甲中学选拔了名学生组成集训队,现统计了这名学生的身高,记录如下表:

身高

人数

1请计算这名学生的身高中位数、众数,并补充完成下面的茎叶图:

2身高为的四名学生分别为,现从这四名学生名担任正副门将,请利用列举法列出所有可能情况,并求学生入选正门将的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱平面线段一点.

)求值,使得

)在()的条件下,求二面角正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为加强学生的交通安全教育,对学校旁边两个路口进行了8天的检测调查,得到每天各路口不按交通规则过马路的学生人数(如茎叶图所示),且路口数据的平均数比路口数据的平均数小2.

(1)求出路口8个数据中的中位数和茎叶图中的值;

(2)在路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.

查看答案和解析>>

同步练习册答案