精英家教网 > 高中数学 > 题目详情
17.如图,已知斜三棱柱ABC-A1B1C1的所有棱长均为2,∠B1BA=$\frac{π}{3}$,且侧面ABB1A1⊥底面ABC.
(Ⅰ)证明:B1C⊥AC1
(Ⅱ)若M为A1C1的中点,求二面角A-B1M-A1的余弦值.

分析 (Ⅰ)过B1作BO⊥平面ABC,则OB,OB1,OC两两垂直,以O为原点,OB为x轴,OC为y轴,OB1为z轴,建立空间直角坐标系,利用向量法能证明B1C⊥AC1
(Ⅱ)求出平面AB1M的法向量和平面B1MA1的法向量,利用向量法能求出二面角A-B1M-A1的余弦值.

解答 证明:(Ⅰ)过B1作BO⊥平面ABC,
∵斜三棱柱ABC-A1B1C1的所有棱长均为2,∠B1BA=$\frac{π}{3}$,
M,N分别为A1C1与B1C的中点,且侧面ABB1A1⊥底面ABC.
∴△ABC和△ABB1是边长为2的等边三角形,∴O是AB中点,∴B1O=$\sqrt{4-1}=\sqrt{3}$,
∴OB,OB1,OC两两垂直,
以O为原点,OB为x轴,OC为y轴,OB1为z轴,建立空间直角坐标系,
则O(0,0,0),B1(0,0,$\sqrt{3}$),C(0,$\sqrt{3}$,0),A(-1,0,0),C1(-1,$\sqrt{3}$,$\sqrt{3}$),
$\overrightarrow{{B}_{1}C}$=(0,$\sqrt{3},-\sqrt{3}$),$\overrightarrow{A{C}_{1}}$=(0,$\sqrt{3},\sqrt{3}$),
∴$\overrightarrow{{B}_{1}C}•\overrightarrow{A{C}_{1}}$=0+3-3=0,
∴B1C⊥AC1
解:(Ⅱ)∵M为A1C1的中点,A1(-2,0,$\sqrt{3}$),A(-1,0,0),B1(0,0,$\sqrt{3}$),C1(-1,$\sqrt{3}$,$\sqrt{3}$),M(-$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$,$\sqrt{3}$),
∴$\overrightarrow{A{B}_{1}}$=(1,0,$\sqrt{3}$),$\overrightarrow{AM}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,$\sqrt{3}$),
设平面AB1M的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{A{B}_{1}}•\overrightarrow{n}=x+\sqrt{3}z=0}\\{\overrightarrow{AM}•\overrightarrow{n}=-\frac{1}{2}x+\frac{\sqrt{3}}{2}y+\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(-$\sqrt{3}$,3,1),
平面B1MA1的法向量$\overrightarrow{m}$=(0,0,1),
设二面角A-B1M-A1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{13}}$=$\frac{\sqrt{13}}{13}$.
∴二面角A-B1M-A1的余弦值为$\frac{\sqrt{13}}{13}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设△ABC的内角A、B、C所对边的长分别为a、b、c,已知a=5,b+c=2a,3sinA=5sinB,则角C的大小是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-aln(x+2),且f(x)存在两个极值点x1,x2,其中x1<x2
(I)求实数a的取值范围;
(II)证明不等式:$\frac{{f({x_1})}}{x_2}+1<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-ax+4(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意的a∈[1,4),都存在x0∈(2,3]使得不等式f(x0)+ea+2a>m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1与抛物线y2=-4x的焦点重合,椭圆E的离心率为$\frac{\sqrt{2}}{2}$,过点M(m,0)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PC}$为定值.
(1)求椭圆E的方程;
(2)求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-1|+a|x+2|.
(Ⅰ)当a=1时,求不等式f(x)≥5的解集;
(Ⅱ)当a<-1时,若f(x)的图象与x轴围成的三角形面积等于6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{xln(1+x)+{x}^{2},x≥0}\\{-xln(1-x)+{x}^{2},x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),则实数a的取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为A,右焦点为F(c,0),直线x=c与双曲线C在第一象限的交点为P,过F的直线l与双曲线C过二、四象限的渐近线平行,且与直线AP交于点B,若△ABF与△PBF的面积的比值为2,则双曲线C的离心率为(  )
A.$\frac{5}{3}$B.$\frac{3\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用列举法表示集合{(x,y)|$\left\{\begin{array}{l}{y={x}^{2}}\\{y=-x}\end{array}\right.$},正确的是(  )
A.(-1,1),(0,0)B.{(-1,1),(0,0)}C.{x=-1或0,y=1或0}D.{-1,0,1}

查看答案和解析>>

同步练习册答案