精英家教网 > 高中数学 > 题目详情

【题目】若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003 . a2004<0,则使前n项和Sn>0成立的最大自然数n是(
A.4005
B.4006
C.4007
D.4008

【答案】B
【解析】解:
解法1:由a2003+a2004>0,a2003a2004<0,知a2003和a2004两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a2003>a2004 , 即a2003>0,a2004<0.
∴S4006= = >0,
∴S4007= (a1+a4007)=4007a2004<0,
故4006为Sn>0的最大自然数.选B.
解法2:由a1>0,a2003+a2004>0,a2003a2004<0,同解法1的分析得a2003>0,a2004<0,
∴S2003为Sn中的最大值.
∵Sn是关于n的二次函数,如草图所示,
∴2003到对称轴的距离比2004到对称轴的距离小,
在对称轴的右侧.
根据已知条件及图象的对称性可得4006在图象中右侧零点B的左侧,4007,4008都在其右侧,Sn>0的最大自然数是4006.
【考点精析】关于本题考查的等差数列的通项公式(及其变式),需要了解通项公式:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对数列{an}前n项和为Sn , an>0(n=1,2,…),a1=a2=1,且对n≥2有(a1+a2+…+an)an=(a1+a2+…+an1)an+1 , 则S1S2+S2S3+S3S4+…+Sn1Sn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asin(x+ )﹣b(a>0)的最大值为2,最小值为0.
(1)求a、b的值;
(2)利用列表法画出函数在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及 格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人.

(1) 根据以上数据建立一个的列联表;

(2) 试判断成绩与班级是否有关?

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知a、b、c分别是三内角A、B、C所对应的边长,且b2+c2﹣a2=bc
(1)求角A的大小;
(2)若sin2A+sin2B=sin2C,试判断△ABC的形状并求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,an+1 =1,记Sn=a12+a22+…+an2 , 若S2n+1﹣Sn 对任意n∈N*恒成立,则正整数m的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn是正项数列{an}的前n项和,且Sn= an2+ an
(1)求数列{an}的通项公式;
(2)若an=2nbn , 求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x+ )的图象,只需将y=sin2x的图象上每一个点(
A.横坐标向左平移 个单位
B.横坐标向右平移 个单位
C.横坐标向左平移 个单位
D.横坐标向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 是坐标原点, 分别为其左右焦点, , 是椭圆上一点, 的最大值为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于两点,且

(i)求证: 为定值;

(ii)求面积的取值范围.

查看答案和解析>>

同步练习册答案