分析 (1)直接展开(3+2$\sqrt{2}$)3求得a3,b3的值;
(2)把(3+2$\sqrt{2}$)n转化为$(\sqrt{2}+1)^{2n}$,展开二项式定理,可得${a}_{n}={C}_{2n}^{0}•(\sqrt{2})^{2n}+{C}_{2n}^{2}•(\sqrt{2})^{2n-2}$$+…+{C}_{2n}^{2n-2}•(\sqrt{2})^{2}+1$=2[${C}_{2n}^{0}•(\sqrt{2})^{2n-2}+{C}_{2n}^{2}•(\sqrt{2})^{2n-4}$$+…+{C}_{2n}^{2n-2}$]+1为奇数;
(3)由(3+2$\sqrt{2}$)n=an+$\sqrt{2}$bn(n∈N*,an∈Z,bn∈Z),得(3-2$\sqrt{2}$)n=an-$\sqrt{2}$bn(n∈N*,an∈Z,bn∈Z),两式相乘得答案.
解答 (1)解:∵(3+2$\sqrt{2}$)3=${C}_{3}^{0}•{3}^{3}+{C}_{3}^{1}•{3}^{2}•2\sqrt{2}+{C}_{3}^{2}•3•(2\sqrt{2})^{2}+$${C}_{3}^{3}•(2\sqrt{2})^{3}$
=27+$54\sqrt{2}$+72+$16\sqrt{2}$=$99+70\sqrt{2}$.
∴a3=99,b3=70;
(2)证明:∵(3+2$\sqrt{2}$)n=$(\sqrt{2}+1)^{2n}$=${C}_{2n}^{0}•(\sqrt{2})^{2n}+{C}_{2n}^{1}•(\sqrt{2})^{2n-1}+{C}_{2n}^{2}(\sqrt{2})^{2n-2}$$+…+{C}_{2n}^{2n-1}•(\sqrt{2})+{C}_{2n}^{2n}$,
∴${a}_{n}={C}_{2n}^{0}•(\sqrt{2})^{2n}+{C}_{2n}^{2}•(\sqrt{2})^{2n-2}$$+…+{C}_{2n}^{2n-2}•(\sqrt{2})^{2}+1$
=2[${C}_{2n}^{0}•(\sqrt{2})^{2n-2}+{C}_{2n}^{2}•(\sqrt{2})^{2n-4}$$+…+{C}_{2n}^{2n-2}$]+1为奇数;
(3)解:对于任意的n∈N*,an2-2bn2是否为定值1.
事实上:∵$(3+2\sqrt{2})^{n}$=${C}_{n}^{0}•{3}^{n}+{C}_{n}^{1}•{3}^{n-1}•(2\sqrt{2})+{C}_{n}^{2}•{3}^{n-2}•(2\sqrt{2})^{2}$$+…+{C}_{n}^{n}•(2\sqrt{2})^{n}$,
$(3-2\sqrt{2})^{n}$=${C}_{n}^{0}•{3}^{n}-{C}_{n}^{1}•{3}^{n-1}•(2\sqrt{2})+{C}_{n}^{2}•{3}^{n-2}•(2\sqrt{2})^{2}$$-…+{C}_{n}^{n}•(-2\sqrt{2})^{n}$.
∴由(3+2$\sqrt{2}$)n=an+$\sqrt{2}$bn(n∈N*,an∈Z,bn∈Z),
得(3-2$\sqrt{2}$)n=an-$\sqrt{2}$bn(n∈N*,an∈Z,bn∈Z).
又∵(3+2$\sqrt{2}$)n•(3-2$\sqrt{2}$)n=1,
∴(an+$\sqrt{2}$bn)•(an+$\sqrt{2}$bn)=an2-2bn2=1.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20}{21}$ | B. | $\frac{19}{20}$ | C. | $\frac{38}{20}$ | D. | $\frac{40}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+(y-$\frac{1}{2}$)2=4 | B. | x2+(y-$\frac{1}{2}$)2=12 | C. | x2+(y-1)2=4 | D. | x2+(y-1)2=12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 12 | C. | 14 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com