解:(I)因为,
又因为当x=0时,f(0)=0,
所以方程f(x)﹣x=0有实数根0.
所以函数是的集合M中的元素.
(II)假设方程f(x)﹣x=0存在两个实数根α,β(α≠β),
则f(α)﹣α=0,f(β)﹣β=0
不妨设α<β,
根据题意存在数c(α,β)使得等式f(β)﹣f(α)=(β﹣α)f'(c)成立.
因为f(α)=α,f(β)=β,且α≠β,
所以f'(c)=1,与已知0<f'(x)<1矛盾,
所以方程f(x)﹣x=0只有一个实数根;
(III)不妨设x2<x3,
因为f'(x)>0,所以f(x)为增函数,
所以f(x2)<f(x3),
又因为f'(x)﹣1<0,所以函数f(x)﹣x为减函数,
所以f(x2)﹣x2>f(x3)﹣x3,
所以0<f(x3)﹣f(x2)<x3﹣x2,即|f(x3)﹣f(x2)|<|x3﹣x2|,
所以|f(x3)﹣f(x2)|<|x3﹣x2|=|x3﹣x1﹣(x2﹣x1)|≤|x3﹣x1|+|x2﹣x1|<2
科目:高中数学 来源: 题型:
x |
2 |
sinx |
4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
3x |
4 |
x3 |
3 |
1 |
2 |
3x |
4 |
x3 |
3 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
2 |
sinx |
4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
2 |
sinx |
4 |
π |
2 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
2 |
lnx |
2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com