精英家教网 > 高中数学 > 题目详情
已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.
(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.
(1)a=1,b=0,g(x)=x2-2x+1,f(x)=x+-2.(2)(-∞,1]
(1)g(x)=ax2-2ax+1+b,由题意得

 (舍).
∴a=1,b=0,g(x)=x2-2x+1,f(x)=x+-2.
(2)不等式f(2x)-k·2x≥0,即2x-2≥k·2x
∴k≤-2·+1.
设t=,则k≤t2-2t+1,∵x∈[-1,1],故t∈.
记h(t)=t2-2t+1,∵t∈,∴h(t)max=1,
故所求k的取值范围是(-∞,1]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数定义在(―1,1)上,对于任意的,有,且当时,
(1)验证函数是否满足这些条件;
(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(3)若,求方程的解。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=a为常数且a∈(0,1).
(1)当a=时,求f
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数是定义域为的偶函数. 当时, 若关于的方程有且只有7个不同实数根,则实数的取值范围是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

”是“函数在区间内单调递增”的(   )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给定函数:①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数是____________.(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}等于(  )
A.{x|x≤0或1≤x≤4}
B.{x|0≤x≤4}
C.{x|x≤4}
D.{x|0≤x≤1或x≥4}

查看答案和解析>>

同步练习册答案