精英家教网 > 高中数学 > 题目详情
已知函数定义在(―1,1)上,对于任意的,有,且当时,
(1)验证函数是否满足这些条件;
(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(3)若,求方程的解。
(1)详见解析;(2)奇函数,,证明详见解析;(3)x=

试题分析:(1)只要把x、y、代入函数解析式化简即可得:,然后验证定义域范围符合即可;
(2)可以根据函数的奇偶性和单调性的定义,并利用赋值法,变量代换的方法得到f(-x)=-f(x)为奇函数和为减函数;
(3)利用奇函数和,得到,代入已知方程即可解决.
试题解析:(1)    ∴-1<x<1即定义域为(-1,1)


∴成立

            4分
(2)令x=y=0,则f(0)=0,令y=-x则f(x)+f(-x)=0
∴f(-x)=-f(x)为奇函数
任取


  
     
         8分
(3)∵f(x)为奇函数    ∴   
         
∵f(x)为(-1,1)上单调函数       13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知命题表示的曲线是双曲线;命题函数在区间上为增函数,若“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)判断函数的奇偶性;
(2)试用函数单调性定义说明函数在区间上的增减性;
(3)若满足:,试证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

上的最大值为p,最小值为q,则p+q=      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在R上的偶函数, 且在区间单调递增.若实数满足,则的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1、x2∈[0,3],且x1≠x2时,都有>0,给出下列命题:
①f(3)=0;
②直线x=-6是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[-9,-6]上为单调增函数;
④函数y=f(x)在[-9,9]上有4个零点.
其中正确的命题是________.(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.
(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x-,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=-(x-3)|x|的递增区间是__________.

查看答案和解析>>

同步练习册答案