精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x-,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.
(1)[2,+∞)(2)(-∞,-2]
(1)当a=-1时,f(x)=2x+
因为0<x≤1,所以f(x)=2x+≥2=2,当且仅当x=时,等号成立,
所以函数y=f(x)的值域是[2,+∞).
(2)(解法1)设0<x1<x2≤1,
由f(x1)-f(x2)==2(x1-x2)+
因为函数y=f(x)在x∈(0,1]上是减函数,
所以f(x1)-f(x2)>0恒成立,
所以2x1x2+a<0,即a<-2x1x2在x∈(0,1]上恒成立,
所以a≤-2,即实数a的取值范围是(-∞,-2].
(解法2)由f(x)=2x-,知f′(x)=2+
因为函数y=f(x)在x∈(0,1]上是减函数,
所以f′(x)=2+≤0在x∈(0,1]上恒成立,
即a≤-2x2在x∈(0,1]上恒成立,
所以a≤-2,即实数a的取值范围是(-∞,-2].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数定义在(―1,1)上,对于任意的,有,且当时,
(1)验证函数是否满足这些条件;
(2)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(3)若,求方程的解。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域为,且其图象上任一点满足方程,给出以下四个命题:
①函数是偶函数;
②函数不可能是奇函数;

.其中真命题的个数是(  )
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给定函数:①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数是____________.(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}等于(  )
A.{x|x≤0或1≤x≤4}
B.{x|0≤x≤4}
C.{x|x≤4}
D.{x|0≤x≤1或x≥4}

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=e|xa|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=f(x)是定义在[-2,2]上的单调减函数,且f(a+1)<f(2a),则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案