精英家教网 > 高中数学 > 题目详情
15.己知等比数列{an}满足a1=2,a1+a3+a5=14,则$\frac{1}{a_1}$+$\frac{1}{a_3}$+$\frac{1}{a_5}$=(  )
A.$\frac{13}{18}$B.$\frac{13}{9}$C.$\frac{7}{8}$D.$\frac{7}{4}$

分析 根据等比数列的性质求出q2的值,从而求出$\frac{1}{a_1}$+$\frac{1}{a_3}$+$\frac{1}{a_5}$的值即可.

解答 解:∵a1=2,a1+a3+a5=14,
∴q4+q2+1=7,q2=2,
∴$\frac{1}{a_1}$+$\frac{1}{a_3}$+$\frac{1}{a_5}$=$\frac{1}{{a}_{1}}$(1+$\frac{1}{{q}^{2}}$+$\frac{1}{{q}^{4}}$)=$\frac{1}{2}$•$\frac{{q}^{4}{+q}^{2}+1}{{q}^{4}}$=$\frac{7}{8}$,
故选:C.

点评 本题考查了等比数列的性质,考查解方程问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.复数z满足(1-2i)z=(1+i)2,则z对应复平面上的点的坐标为(-$\frac{4}{5}$,$\frac{2}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线y=k(x-1)与圆x2+y2-2y-2=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在四面体P-ABC中,PC⊥平面ABC,AB=AC=2,BC=PC=2$\sqrt{2}$,则该四面体外接球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)是定义在R上的奇函数,且满足f(x+2)=-$\frac{1}{f(x)}$,当1≤x≤2时,f(x)=x,则f(-$\frac{11}{2}$)=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校为了了解学生近视的情况,对四个非毕业年级各班的近视学生人数做了统计,每个年级都有7个班.如果某个年级的每个班的近视人数都不超过5人,则认定该年级为“学生视力保护达标年级”.这四个年级各班近视学生人数情况统计如表:
初一年级平均值为2,方差为2
初二年级平均值为1,方差大于0
高一年级中位数为3,众数为4
高二年级平均值为3,中位数为4
从表中数据可知:一定是“学生视力保护达标年级”的是(  )
A.初一年级B.初二年级C.高一年级D.高二年级

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.自极点O任意作一条射线与直线ρcosθ=3相交于点M,在射线OM上取点P,使得OM•OP=12,求动点P的极坐标方程,并把它化为直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内,复数$\frac{3i-1}{1+3i}$对应的点的坐标为(  )
A.($\frac{4}{5}$,$\frac{3}{5}$)B.(-1,$\frac{3}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)D.($\frac{3}{5}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.自圆外一点P作圆x2+y2=1的两条切线PM,PN(M,N为切点),若∠MPN=90°,则动点P的轨迹方程是x2+y2=2.

查看答案和解析>>

同步练习册答案