精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程.

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

【答案】(1); 线的直角坐标方程为;(2).

【解析】试题分析:(1)直线的参数方程中的参数为,所以消得到直线的普通方程;根据,极坐标方程两边同时乘以,化简为曲线的普通方程;(2)根据直线过点,可知直线的倾斜角,代入直线的参数方程,得到,代入曲线的极坐标方程,转化为关于的一元二次方程,根据的几何意义可知.

试题解析:(1直线的参数方程为为参数),

直线的普通方程为....................2

,得,即

曲线的直角坐标方程为.............................4

2的极坐标为的直角坐标为...............5

,直线的倾斜角

直线的参数方程为为参数)...................7

代入,得.....................8

两点对应的参数为

为线段的中点,

对应的参数值为

又点,则.........................10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x∈R|2x﹣8=0},B={x∈R|x2﹣2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为a1= ,公比q= 的等比数列,设bn+2=3log an(n∈N*),数列{cn}满足cn=anbn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若cn +m﹣1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的单调递减区间为(
A.(﹣∞,+∞)
B.(﹣∞,0)∪(0,+∞)
C.(﹣∞,0),(0,+∞)
D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在平行四边形中, , 分别为的中点.现把平行四边形沿折起,如图(2)所示,连结.

1)求证:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x2﹣2ax﹣b,其中a,b是实数.
(1)若不等式f(x)≤0的解集是[0,6],求ab的值;
(2)若b=3a,对任意x∈R,都有f(x)≥0,且存在实数x,使得f(x)≤2﹣ a,求实数a的取值范围;
(3)若方程有一个根是1,且a,b>0,求 的最小值,及此时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线x=t与函数f(x)=x2 , g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为

查看答案和解析>>

同步练习册答案