精英家教网 > 高中数学 > 题目详情

若直线y=kx+2与曲线y=x3+mx+n相切于点(1,4),则n=________.

4
分析:把切点坐标代入直线方程即可求出方程的斜率k,然后对曲线方程求导得到导函数,把切点的横坐标代入导函数中求出的导函数值等于斜率k,列出关于m的方程,求出方程的解得到m的值,然后把切点坐标和m的值代入曲线方程中即可求出n的值.
解答:把(1,4)代入直线方程得:k=2,
求导得:y′=3x2+m,把x=1代入得:k=y′x=1=3+m=2,解得m=-1,
又把(1,4)和m=-1代入曲线方程得:1-1+n=4,即n=4.
故答案为:4
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线y=kx+2与双曲线x2-y2=6只有一个交点,那么实数k的值是(  )
A、
15
3
,1
B、±
15
3
C、±1
D、±
15
3
,±1

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=kx-2与抛物线y2=8x交于A、B两点,若线段AB的中点的横坐标是2,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=kx-2与焦点在x轴上的椭圆
x2
5
+
y2
m
=1
恒有公共点,则实数m的取值范围为
[4,5)
[4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若直线y=kx+2与圆(x-2)2+(y-3)2=1相切,求实数k的值;
(2)若直线y=kx+2与圆(x-2)2+(y-3)2=1相离,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1,(a>b>0)
左、右焦点分别为F1(-c,0),F2(c,0),点A、B坐标为A(a,0),B(0,b),若△ABC面积为
3
2
,∠BF2A=120°.
(1)求椭圆的标准方程;
(2)若直线y=kx+2与椭圆交于不同的两点M、N,且以MN为直径的圆恰好过原点,求实数k的取值;
(3)动点P使得
F1P
F1F2
PF1
PF2
F2F
1
F2P
成公差小于零的等差数列,记θ为向量
PF1
PF2
的夹角,求θ的取值范围.

查看答案和解析>>

同步练习册答案