ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¬(a£¾b£¾0)
×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬µãA¡¢B×ø±êΪA£¨a£¬0£©£¬B£¨0£¬b£©£¬Èô¡÷ABCÃæ»ýΪ
3
2
£¬¡ÏBF2A=120¡ã£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÈôÖ±Ïßy=kx+2ÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÇÒÒÔMNΪֱ¾¶µÄԲǡºÃ¹ýÔ­µã£¬ÇóʵÊýkµÄÈ¡Öµ£»
£¨3£©¶¯µãPʹµÃ
F1P
F1F2
¡¢
PF1
PF2
¡¢
F2F
1
F2P
³É¹«²îСÓÚÁãµÄµÈ²îÊýÁУ¬¼Ç¦ÈΪÏòÁ¿
PF1
Óë
PF2
µÄ¼Ð½Ç£¬Çó¦ÈµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÔÚRT¡÷BOF2ÖУ¬¡ÏBF2O=60¡ã£¬¼ÆËãµÃ£ºb=
3
c£¬a=2c
£¬ÓÉS¡÷ABF2=
1
2
((a-c)b=
3
2
£¬¿É¼ÆËãµÃa=2£¬b=
3
£¬c=1
£¬´Ó¶ø¿ÉÇóÍÖÔ²±ê×¼·½³Ì£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+2£®ÓëÍÖÔ²·½³ÌÁªÁ¢£¬¸ù¾ÝÅбðʽ´óÓÚ0ÇóµÃkµÄ·¶Î§£¬ÉèM£¬NÁ½µã×ø±ê·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®¸ù¾ÝΤ´ï¶¨ÀíÇóµÃx1+x2ºÍx1x2£¬½ø¶ø¸ù¾ÝÈôÒÔMNΪֱ¾¶µÄԲǡºÃ¹ýÔ­µã£¬x1•x2+y1•y2=0£¬´úÈë¼´¿ÉÇóµÃk£¬×îºó¼ìÑé¿´ÊÇ·ñ·ûºÏÌâÒ⣮
£¨3£©ÉèPµÄ×ø±ê£¬ÓÉ
F1P
F1F2
¡¢
PF1
PF2
¡¢
F2F
1
F2P
³É¹«²îСÓÚÁãµÄµÈ²îÊýÁеãºx2+y2=33¡Ýx2£¾0
´Ó¶ø
1
2
£¼cos¦È¡Ü1
£¬ËùÒÔ¿ÉÇó¦ÈµÄÈ¡Öµ·¶Î§£®£®
½â´ð£º½â£º£¨1£©ÔÚRT¡÷BOF2ÖУ¬¡ÏBF2O=60¡ã£¬¼ÆËãµÃ£ºb=
3
c£¬a=2c

ÓÉS¡÷ABF2=
1
2
((a-c)b=
3
2
£¬¼ÆËãµÃa=2£¬b=
3
£¬c=1
£¬ËùÒÔÍÖÔ²±ê×¼·½³ÌΪ
x2
4
+
y2
3
=1
£®
£¨2£©Éè½»µãM¡¢N×ø±êΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©
½«Ö±Ïßy=kx+2´úÈëÍÖÔ²
x2
4
+
y2
3
=1
ÕûÀíµÃ·½³Ì£¬3+4k2£©x2+16kx+4=0£»
x1+x2=-
16k
3+4k2
x1x2=
4
3+4k2

ÓÉ¡÷£¾0µÃk£¼-
1
2
»òk£¾
1
2

ÓÉMNΪֱ¾¶µÄÔ²¹ýÔ­µãµÃx1•x2+y1•y2=0£¬ËùÒÔx1•x2+£¨kx1+2£©£¨kx2+2£©=0£¬¼ÆËã²¢¼ìÑéµÃk=¡À
2
3
3
¼´ÎªËùÇó£®
£¨3£©ÉèP£¨x£¬y£©£¬ÓÉ
F1P
F1F2
¡¢
PF1
PF2
¡¢
F2F
1
F2P
³É¹«²îСÓÚÁãµÄµÈ²îÊýÁеãºx2+y2=33¡Ýx2£¾0cos¦Á=
PF1
PF2
|PF1|
¡Á|
PF2
|
=
1
4-x2

ËùÒÔ
1
2
£¼cos¦È¡Ü1
£¬ËùÒÔ
¦Ð
3
£¾¦È¡Ý0
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³ÌµÄÇó½â£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬×󶥵ãΪA£¬Èô|F1F2|=2£¬ÍÖÔ²µÄÀëÐÄÂÊΪe=
1
2

£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£¬
£¨¢ò£©ÈôPÊÇÍÖÔ²ÉϵÄÈÎÒâÒ»µã£¬Çó
PF1
PA
µÄÈ¡Öµ·¶Î§
£¨III£©Ö±Ïßl£ºy=kx+mÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£¨¾ù²»Êdz¤ÖáµÄ¶¥µã£©£¬AH¡ÍMN´¹×ãΪHÇÒ
AH
2
=
MH
HN
£¬ÇóÖ¤£ºÖ±Ïßlºã¹ý¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó½¹µãF£¨-c£¬0£©Êdz¤ÖáµÄÒ»¸öËĵȷֵ㣬µãA¡¢B·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬¹ýµãFÇÒ²»ÓëyÖá´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚC¡¢DÁ½µã£¬¼ÇÖ±ÏßAD¡¢BCµÄбÂÊ·Ö±ðΪk1£¬k2
£¨1£©µ±µãDµ½Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬Ö±Ïßl¡ÍxÖáʱ£¬Çók1£ºk2µÄÖµ£»
£¨2£©Çók1£ºk2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊÊÇ
3
2
£¬ÇÒ¾­¹ýµãM£¨2£¬1£©£¬Ö±Ïßy=
1
2
x+m(m£¼0)
ÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µ±m=-1ʱ£¬Çó¡÷MABµÄÃæ»ý£»
£¨3£©Çó¡÷MABµÄÄÚÐĵĺá×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Íþº£¶þÄ££©ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪe=
6
3
£¬¹ýÓÒ½¹µã×ö´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚÁ½µã£¬ÇÒÁ½½»µãÓëÍÖÔ²µÄ×󽹵㼰ÓÒ¶¥µã¹¹³ÉµÄËıßÐÎÃæ»ýΪ
2
6
3
+2
£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèµãM£¨0£¬2£©£¬Ö±Ïßl£ºy=1£¬¹ýMÈÎ×÷Ò»Ìõ²»ÓëyÖáÖغϵÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬ÈôNΪABµÄÖе㣬DΪNÔÚÖ±ÏßlÉϵÄÉäÓ°£¬ABµÄÖд¹ÏßÓëyÖá½»ÓÚµãP£®ÇóÖ¤£º
ND
MP
AB
2
Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¬¹ýF×÷yÖáµÄƽÐÐÏß½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬Èô|MN|=3£¬ÇÒÍÖÔ²ÀëÐÄÂÊÊÇ·½³Ì2x2-5x+2=0µÄ¸ù£¬ÇóÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸