精英家教网 > 高中数学 > 题目详情
15.设α、β、γ是三个不同的平面,a、b是两条不同的直线,下列四个命题中正确的是(  )
A.若a∥α,b∥α,则a∥b
B.若a⊥α,b⊥β,a⊥b,则α⊥β
C.若a∥α,b∥β,a∥b,则α∥β
D.若a,b在平面α内的射影互相垂直,则a⊥b

分析 在A中,a与b相交、平行或异面;在B中,由面面垂直的判定定理得α⊥β;在C中,α与β相交或平行;在D中,a与b相交、平行或异面.

解答 解:由α、β、γ是三个不同的平面,a、b是两条不同的直线,知:
在A中,若a∥α,b∥α,则a与b相交、平行或异面,故A错误;
在B中,若a⊥α,b⊥β,a⊥b,则由面面垂直的判定定理得α⊥β,故B正确;
在C中,若a∥α,b∥β,a∥b,则α与β相交或平行,故C错误;
在D中,若a,b在平面α内的射影互相垂直,则a与b相交、平行或异面,故D错误.
故选:B.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,将平面直角坐标系中的纵轴绕原点O顺时针旋转30°后,构成一个斜坐标平面xOy.在此斜坐标平面xOy中,点P(x,y)的坐标定义如下:过点P作两坐标轴的平行线,分别交两轴于M,N两点,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.那么以原点O为圆心的单位圆在此斜坐标系下的方程为x2+y2+xy-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}4x+3y≤12\\ x≥0\\ y≥0\end{array}$,则z=$\frac{y+3}{x+1}$的取值范围是[$\frac{3}{4}$,7].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sin(60°+α)=$\frac{5}{13}$,30°<α<120°,则cosα=$\frac{{5\sqrt{3}-12}}{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为$\widehaty$=0.8x-155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为(  )
x196197200203204
y1367m
A.8.3B.8.2C.8.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下面的各图中,散点图与相关系数r不符合的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是高二数学选修1-2第二章“推理与证明”的知识结构图,已知反证法是一种间接证明方法,如果要在图中加入反证法,则应把它放在(  )
A.“合情推理”的下位B.“演绎推理”的下位
C.“直接证明”的下位D.“间接证明”的下位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\ sin\frac{π}{6}x,x≤0\end{array}\right.$,则$f[{f(\frac{1}{4})}]$=(  )
A.$\frac{1}{2}$B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某人经营一个抽奖游戏,顾客花费3元钱可购买一次游戏机会,每次游戏中,顾客从标有黑1、黑2、黑3、黑4、红1、红3的6张卡片中随机抽取2张,并根据摸出的卡片的情况进行兑奖,经营者将顾客抽到的卡片情况分成以下类别:A:同花顺,即卡片颜色相同且号码相邻;B:同花,即卡片颜色相同,但号码不相邻;C:顺子,即卡片号码相邻,但颜色不同;D:对子,即两张卡片号码相同;E:其他,即A,B,C,D以外的所有可能情况.若经营者打算将以上五种类别中最不容易发生的一种类别对应顾客中一等奖,最容易发生的一种类别对应顾客中二等奖,其他类别对应顾客中三等奖.
(1)一、二等奖分别对应哪一种类别?(写出字母即可)
(2)若经营者规定:中一、二、三等奖,分别可获得价值9元、3元、1元的奖品,假设某天参与游戏的顾客为300人次,试估计经营者这一天的盈利.

查看答案和解析>>

同步练习册答案