分析 设圆心O(a,b),由题意利用两点间距离公式和直线过圆心的性质列出方程组,求出圆心和半径,由此能求出圆的标准方程.
解答 解:设圆心O(a,b),
由题意得$\left\{\begin{array}{l}{\sqrt{(a-3)^{2}+(b+2)^{2}}=\sqrt{(a+1)^{2}+(b+4)^{2}}}\\{a+3b+1=0}\end{array}\right.$,
解得a=-$\frac{2}{5}$,b=-$\frac{1}{5}$,
∴圆心O(-$\frac{2}{5}$,-$\frac{1}{5}$),半径r=$\sqrt{(-\frac{2}{5}-3)^{2}+(-\frac{1}{5}+2)^{2}}$=$\frac{\sqrt{370}}{5}$,
∴圆的标准方程为($x+\frac{2}{5}$)2+(y+$\frac{1}{5}$)2=$\frac{74}{5}$.
故答案为:($x+\frac{2}{5}$)2+(y+$\frac{1}{5}$)2=$\frac{74}{5}$.
点评 本题考查圆的标准方程的求法,是基础题,解题时要认真审题,注意两点间距离公式和圆的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y=0 | B. | x+y=2 | C. | x-y=2 | D. | x-y=-2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com