1£®Éè|$\overline{a}$|=4£¬|$\overrightarrow{b}$|=3£¬£¨$\overrightarrow{a}$£¬$\overrightarrow{b}$£©=$\frac{¦Ð}{6}$£¬Çó$\overrightarrow{a}$+2$\overrightarrow{b}$ºÍ$\overrightarrow{a}$-3$\overrightarrow{b}$Ϊ±ßµÄƽÐÐËıßÐεÄÃæ»ý£®

·ÖÎö ÓÉÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Òå¿ÉµÃ$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overline{a}$|•|$\overrightarrow{b}$|•cos£¨$\overrightarrow{a}$£¬$\overrightarrow{b}$£©=4¡Á3¡Á$\frac{\sqrt{3}}{2}$=6$\sqrt{3}$£¬·Ö±ðÇóµÃ$\overrightarrow{a}$+2$\overrightarrow{b}$ºÍ$\overrightarrow{a}$-3$\overrightarrow{b}$µÄÄ£ºÍÊýÁ¿»ý£¬ÔÙÓÉÆ½ÐÐËıßÐεÄÃæ»ýS=|$\overrightarrow{a}$+2$\overrightarrow{b}$|•|$\overrightarrow{a}$-3$\overrightarrow{b}$|•sin£¼$\overrightarrow{a}$+2$\overrightarrow{b}$£¬$\overrightarrow{a}$-3$\overrightarrow{b}$£¾£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£º$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overline{a}$|•|$\overrightarrow{b}$|•cos£¨$\overrightarrow{a}$£¬$\overrightarrow{b}$£©=4¡Á3¡Á$\frac{\sqrt{3}}{2}$=6$\sqrt{3}$£¬
¼´ÓÐ|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}$=$\sqrt{16+4¡Á6\sqrt{3}+4¡Á9}$=$\sqrt{52+24\sqrt{3}}$£¬
|$\overrightarrow{a}$-3$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}-6\overrightarrow{a}•\overrightarrow{b}+9{\overrightarrow{b}}^{2}}$=$\sqrt{16-6¡Á6\sqrt{3}+9¡Á9}$=$\sqrt{97-36\sqrt{3}}$£¬
£¨$\overrightarrow{a}$+2$\overrightarrow{b}$£©•£¨$\overrightarrow{a}$-3$\overrightarrow{b}$£©=$\overrightarrow{a}$2-$\overrightarrow{a}$•$\overrightarrow{b}$-6$\overrightarrow{b}$2=16-6$\sqrt{3}$-6¡Á9=-38-6$\sqrt{3}$£¬
¼´ÓÐ$\overrightarrow{a}$+2$\overrightarrow{b}$ºÍ$\overrightarrow{a}$-3$\overrightarrow{b}$Ϊ±ßµÄƽÐÐËıßÐεÄÃæ»ýΪ
S=|$\overrightarrow{a}$+2$\overrightarrow{b}$|•|$\overrightarrow{a}$-3$\overrightarrow{b}$|•sin£¼$\overrightarrow{a}$+2$\overrightarrow{b}$£¬$\overrightarrow{a}$-3$\overrightarrow{b}$£¾=$\sqrt{|\overrightarrow{a}+2\overrightarrow{b}{|}^{2}•|\overrightarrow{a}-3\overrightarrow{b}{|}^{2}-£¨£¨\overrightarrow{a}+2\overrightarrow{b}£©•£¨\overrightarrow{a}-3\overrightarrow{b}£©£©^{2}}$
=$\sqrt{£¨52+24\sqrt{3}£©£¨97-36\sqrt{3}£©-£¨-38-6\sqrt{3}£©^{2}}$=30£®

µãÆÀ ±¾Ì⿼²éƽÐÐËıßÐεÄÃæ»ýµÄÇ󷨣¬×¢ÒâÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÐÔÖÊ£¬¿¼²éÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªxºÍyÂú×ãÔ¼ÊøÌõ¼þ$\left\{{\begin{array}{l}{x+y¡Ý4}\\{x+4¡Ýy}\\{x¡Ü4}\end{array}}\right.$£¬ÔòÄ¿±êº¯Êýz=x2+y2-2yµÄ×îСֵΪ$\frac{7}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ö±Ïßl1£ºy=$\frac{1}{2}$x+bÓël2£ºy=$\frac{1}{2}$x+b+8¹ØÓÚµãA£¨4£¬6£©¶Ô³Æ£¬ÇóbµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èô£¨1-5x£©9=a0+a1x+a${\;}_{2}^{\;}$x2+¡­+a9x9£¬ÄÇô|a0|+|a1|+|a2|+¡­+|a9|µÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®49C£®59D£®69

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¾­¹ýÁ½¸öµãM£¨3£¬-2£©ÓëN£¨-1£¬-4£©ÇÒÔ²ÐÄÔÚÖ±Ïßx+3y+1=0ÉϵÄÔ²µÄ±ê×¼·½³ÌΪ£¨$x+\frac{2}{5}$£©2+£¨y+$\frac{1}{5}$£©2=$\frac{74}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¼ºÖªa£¨3-a£©£¾0£¬ÄÇô$\frac{1}{a}$$+\frac{9}{3-a}$µÄ×îСֵÊÇ$\frac{16}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®º¯Êýy=2cos4x+2sin4x-1µÄ×îСֵΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªsin¦Á=$\frac{\sqrt{10}}{10}$£¬cos¦Â=$\frac{\sqrt{5}}{5}$£¬ÇÒ¦Á£¬¦Â¶¼ÊÇÈñ½Ç£¬Çó¦Á+¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®É躯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪD£¬Èô¶ÔÓÚÈÎÒâx1£¬x2¡ÊDÇÒx1+x2=2a£¬ºãÓÐf£¨x1£©+f£¨x2£©=2b£¬Ôò³Æµã£¨a£¬b£©Îªº¯Êýy=f£¨x£©Í¼ÏóµÄ¶Ô³ÆÖÐÐÄ£¬Ñо¿²¢ÀûÓú¯Êýf£¨x£©=x3-3x2-sin¦ÐxµÄ¶Ô³ÆÖÐÐÄ£¬¿ÉµÃ$f£¨\frac{1}{2013}£©+f£¨\frac{2}{2013}£©+¡­+f£¨\frac{4024}{2013}£©+f£¨\frac{4025}{2013}£©$=£¨¡¡¡¡£©
A£®4025B£®-4025C£®8050D£®-8050

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸