精英家教网 > 高中数学 > 题目详情
求函数f(x)=x2+x-2-a(x+x-1)+a+2(x>0)的最小值.
考点:函数的最值及其几何意义,有理数指数幂的化简求值
专题:计算题,函数的性质及应用
分析:化简f(x)=x2+x-2-a(x+x-1)+a+2=(x+x-12-a(x+x-1)+a;从而令z=x+x-1,则z≥2;配方法得y=z2-az+a=(z-
a
2
2+a-
a2
4
;从而求最小值.
解答: 解:f(x)=x2+x-2-a(x+x-1)+a+2
=(x+x-12-a(x+x-1)+a;
令z=x+x-1,则z≥2;
y=z2-az+a=(z-
a
2
2+a-
a2
4

a
2
≤2,即a≤4时,
ymin=4-2a+a=4-a;
a
2
>2,即a>4时,
ymin=a-
a2
4
点评:本题考查了换元法及配方法求函数的最小值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式0<1-x2≤1的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在长为20m,宽为16m的长方形展厅正中央有一圆盘形展台(圆心为点C),展厅入口位于长方形的长边的中间,在展厅一角B点处安装监控摄像头,使点B与圆C在同一水平面上,且展台与入口都在摄像头水平监控范围内(如图阴影所示).

(1)若圆盘半径为2
5
m,求监控摄像头最小水平视角的正切值;
(2)过监控摄像头最大水平视角为60°,求圆盘半径的最大值.(注:水平摄像视角指镜头中心点水平观察物体边缘的实现的夹角.)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列1,2,3,5,8,13,21,…最初是由意大利数学家列昂那多•斐波那契于1202年兔子繁殖问题中提出来的,称之为斐波那契数列,又称黄金分割数列,后来发现很多自然现象都符合这个数列的规律,某校数学兴趣小组对该数列研究后,类比该数列各项产生的办法,得到数列{an}:1,2,1,6,9,10,17,…,设数列{an}的前n项和为Sn
(Ⅰ)请计算:a1+a2+a3,a2+a3+a4,a3+a4+a5,并依此规律求数列{an}的第8项a8=
 

(Ⅱ)S3n+1=
 
(请用关于n的多项式表示.12+22+33+…+n2=
n(n+1)(2n+1)
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(x-a)2-1,x≥0
-(x-b)2+1,x<0
,其中a,b∈R.
(Ⅰ)当a<0时,且f(x)为奇函数,求f(x)的表达式;
(Ⅱ)当a>0时,且f(x)在(-1,1)上单调递减,求b-a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x-y≤0
x+y-1≥0
y≤3
,则z=x+2y的最小值为(  )
A、1
B、
3
2
C、2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

为了迎接2011西安世园会,某校响应号召组织学生成立了“校园文艺队”.已知每位队员唱歌、跳舞至少会一项,其中会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P(ξ>0)=
7
10

(1)求文艺队的人数;        
(2)求ξ的分布列并计算Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:m
C
m
n
=n
C
m-1
n-1
(m≤n,m,n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知实数t满足t∈(0,10),由t确定的两个任意点P(t,t),Q(10-t,0),问:
(1)直线PQ是否能通过点M(6,1)和点N(4,5)?
(2)在△OPQ中作内接正方形ABCD,顶点A、B在边OQ上,顶点C在边PQ上,顶点D在边OP上.
求图中阴影部分面积的最大值并求对应的顶点A、B、C、D的坐标.

查看答案和解析>>

同步练习册答案