精英家教网 > 高中数学 > 题目详情
14.已知数列{an},设Sn是数列{an}的前n项和,并且满足a1=1,对任意正整数n,有Sn+1=4an+2.
(1)令bn=an+1-2an(n=1,2,3,…),证明{bn}是等比数列,并求{bn}的通项公式;
(2)求cn=$\frac{{b}_{n}}{3}$,求数列{$\frac{1}{lo{g}_{2}{C}_{n+2}•lo{g}_{2}{C}_{n+1}}$}的前n项和Tn

分析 (1)利用an+1=Sn+1-Sn可知证明an+1=4(an-an-1),通过bn=an+1-2an可知bn+1=2(an+1-2an),通过作商可知{bn}是公比为2的等比数列,通过a1=1可知b1=3,进而可得结论;
(2)通过(1)可知cn=2n-1,裂项可知$\frac{1}{lo{g}_{2}{C}_{n+2}•lo{g}_{2}{C}_{n+1}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,并项相加即得结论.

解答 (1)证明:an+1=Sn+1-Sn=(4an+2)-(4an-1+2)
=4(an-an-1) (n∈N+,n≥2).…(1分)
由题意知bn=an+1-2an
∴bn+1=an+2-2an+1
∴bn+1=4(an+1-an)-2an+1=2an+1-4an=2(an+1-2an),…(3分)
∴$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{2({a}_{n-1}-2{a}_{n})}{{a}_{n-1}-2{a}_{n}}$=2(n∈N+),
∴{bn}是等比数列,公比q=2.…(5分)
又∵S2=4a1+2,∴a1+a2=4a1+2,
∴1+a2=4+2,∴a2=5,
∴b1=a2-2a1=5-2=3,
∴bn=b1•qn-1=3•2n-1.…(7分)
(2)解:∵cn=$\frac{{b}_{n}}{3}$=2n-1,…(8分)
∴$\frac{1}{lo{g}_{2}{C}_{n+2}•lo{g}_{2}{C}_{n+1}}$=$\frac{1}{(n+1)n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.…(10分)

点评 本题考查数列的通项及前n项和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知tanθ=$\frac{3}{4}$,θ为第三象限角,求$cos(θ-\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知袋子中装有3个红球、2个白球、1个黑球,如果从中随机任取2个,则下列两个事件中是互斥而不对立的是(  )
A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球
C.至少有一个白球;红球、黑球各一个D.恰有一个白球;白球、黑球各一个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校决定为本校上学时间不少于30分钟的学生提供校车接送服务.为了解学生上学所需时间,从全校600名学生中抽取50人统计上学时间(单位:分钟),现对600人随机编号为001,002,…600.抽取50位学生上学时间均不超过60分钟,将时间按如下方式分成六组,第一组上学时间在[0,10),第二组上学时间在[10,20),…第六组上学时间在[50,60]得到各组人数的频率分布直方图.如图.
(1)若抽取的50个样本是用系统抽样的方法得到,且第一段的号码为006,则第五段抽取的号码是什么?
(2)若从50个样本中属于第4组和第6组的所有人中随机抽取2人,设他们上学时间分别为a、b,求满足|a-b|>10的事件的概率;
(3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将长为l的棒随机折成三段,求这三段能构成三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出四个结论:(1)若a>b>0,且m>0,则$\frac{b}{a}$<$\frac{b+m}{a+m}$;(2)若a,b∈R,则$\frac{{a}^{2}+{b}^{2}}{2}$≥($\frac{a+b}{2}$)2;(3)若a,b∈R,则a2-2ab+2b2<2b-2;(4)若a>0,b>0,则aabb≥abba,其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z1=a+bi,z2=-1+ai(a,b∈R),若|z1|<|z2|,则(  )
A.b<-1或b>1B.-1<b<1C.b>1D.b>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是32cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(cosα,$\frac{1}{2}$),若$\overrightarrow{a}$的模长为$\frac{\sqrt{2}}{2}$,则cos2α等于(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案