分析 (1)由f(x)=|lgx|,f(a)=f(b)可知|lga|=|lgb|.再由0<a<b,y=lgx是增函数,可知-lga=lgb,由此可证a<1<b.
(2)由f(a)=f(b)=2f($\frac{a+b}{2}$)可知$\frac{1}{a}$=b=$\frac{(a+b)^{2}}{4}$,由此可证2<4b-b2<3.
解答 (1)证明:∵f(x)=|lgx|,f(a)=f(b),
∴|lga|=|lgb|.
∵0<a<b,y=lgx是增函数,
∴-lga=lgb,
故a<1<b.
(2)证明:∵-lga=lgb,
∴lg$\frac{1}{a}$=lgb,
∴ab=1,
∵0<a<b,
∴$\frac{a+b}{2}$>$\sqrt{ab}$=1.
∵f(a)=f(b)=2f($\frac{a+b}{2}$),
∴lg$\frac{1}{a}$=lgb=lg($\frac{a+b}{2}$)2,
∴$\frac{1}{a}$=b=$\frac{(a+b)^{2}}{4}$.
∴4b=($\frac{1}{b}$+b)2=$\frac{1}{{b}^{2}}$+b2+2,
∴4b-b2=$\frac{1}{{b}^{2}}$+2,
∵b>1,
∴2<4b-b2<3.
点评 本题考查的知识点是对数函数的图象和性质,函数图象的对折变换,对数的运算性质,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -15 | B. | 15 | C. | 10 | D. | -10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 无最小值且无最大值 | B. | 无最小值但有最大值 | ||
| C. | 有最小值但无最大值 | D. | 有最小值且有最大值 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com