精英家教网 > 高中数学 > 题目详情
2.把189化为四进制数,则末位数字是(  )
A.0B.1C.2D.3

分析 把十进制的数转换为其它进制的数的方法是:把要转换的数,除以其它进制,得到商和余数.然后用得到的商除以其它进制,直到商为0为止.再将所有余数倒序排列即可.

解答 解:189÷4=47…1,(末位)
47÷4=11…3,
11÷4=2…3,
2÷4=0…2,
把所有余数倒序排列,即:2331.
所以,(189)10=(2331)4
所以,把189化为四进制数的末位为1.
故选:B.

点评 此题考查了把十进制的数转换为其它进制数的问题,重点掌握转换的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.f(x)是定义在R上的可导函数,则f′(x0)=0是x0为f(x) 的极值点的必要不充分条件.(填充分不必要,必要不充分,充要条件或既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线y=ax+b通过第一、二、四象限,则圆(x+a)2+(y+b)2=1的圆心位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)、g(x)、h(x)是定义域为R的三个函数.对于命题:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x) 均是以T为周期的函数;
 ②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数,
下列判断正确的是(  )
A.①和②均为真命题B.①和②均为假命题
C.①为真命题,②为假命题D.①为假命题,②为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则下面结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{2}$B.φ=$\frac{π}{9}$
C.函数f(x)的图象关于直线x=$\frac{5π}{6}$对称D.函数f(x)在区间[0,$\frac{π}{4}$]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.以点F为焦点的抛物线$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t为参数),则F的横坐标是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-2alnx.
(1)求函数f(x)的单调区间;
(2)若不等式$f(x)≥{x^2}-\frac{2a}{e}•{e^x}+{a^2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点分别为F1,F2,点A为双曲线Γ的左顶点,点M(x1,y1)(x1>0,y1>0)为双曲线Γ渐近线上的一点,且$\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow 0,\overrightarrow{OM},\overrightarrow{ON}$均为焦距的一半,若$∠MAN=\frac{2π}{3}$,则双曲线Γ的渐近线为(  )
A.$y=±\frac{{2\sqrt{3}}}{3}x$B.$y=±\frac{{\sqrt{3}}}{2}x$C.$y=±\frac{{\sqrt{5}}}{2}x$D.$y=±\frac{{2\sqrt{5}}}{5}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆O是△ABC的内切圆,与AC,BC分别切于D,E两点,如图所示,连接BD交圆O于点G,BC=BA=2$\sqrt{2}$,AC=4 
(I)求证:EG∥CO;
(Ⅱ)求BC的长.

查看答案和解析>>

同步练习册答案