精英家教网 > 高中数学 > 题目详情
函数f(x)=ax3+x恰有三个单调区间,则a的取值范围是
 
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:求出函数f(x)的导数,要使f(x)=ax3+x恰有三个单调区间,则f'(x)=0,有两个不等的实根,利用判别式△>0,进行求解即可.
解答: 解:∵f(x)=ax3+x,
∴f′(x)=3ax2+1,
若a≥0,f′(x)≥0恒成立,此时f(x)在(-∞,+∞)上为增函数,函数只有一个增区间,不满足条件.
若a<0,由f′(x)>0,得-
-
1
3a
<x<
-
1
3a

由f′(x)<0,得x
-
1
3a
,或x<-
-
1
3a

∴满足f(x)=ax3+x恰有三个单调区间的a的范围是(-∞,0);
故答案为:(-∞,0);
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式|x+3|-|x-1|≤a2-3a,对任意实数x恒成立,则实数a的取值范围为(  )
A、(-∞,-2]∪[5,+∞)
B、[-1,4]
C、[-2,5]
D、(-∞,-1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(2,1)为圆
 x=1+5cosθ
y=5sinθ
的弦的中点,则该弦所在的直线方程是(  )
A、x+y-3=0
B、x+2y=0
C、x+y-1=0
D、2x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的多面体是由底面为ABCD的长方体被截面AEFG所截而得,其中AB=4,BC=1,BE=3,CF=4,若如图所示建立空间直角坐标系:
①求
EF
和点G的坐标;
②求异面直线EF与AD所成的角;
③求点C到截面AEFG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,C、D是以AB为直径的圆上两点,AB=2AD=2
3
,AC=BC,F是AB上一点,且AF=
1
3
AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=
2


(1)求证:AD⊥平面BCE;
(2)求三棱锥A-CFD的体积.
(3)异面直线AC与BD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
,D是线段AB的垂直平分线上的一点,D到AB的距离为2,过C的曲线E上任一点P满足|
PA
|+|
PB
|为常数.
(1)建立适当的坐标系,并求出曲线E的方程.
(2)过点D的直线l与曲线E相交于不同的两点M,N,且M点在D,N之间,若|
DM
|=λ|
DN
|,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学对高三年级进行身高统计,测量随机抽取的40名学生的身高,其结果如下(单位:cm)
分组[140,145)[145,150)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)合计
人数12591363140
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计数据落在[150,170]范围内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品按质量标准分成五个等级,等级编号x依次为1,2,3,4,5,现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:
x12345
频率a0.30.35bc
(1)若所抽取的20件产品中,等级编号为4的恰有2件,等级编辑为5的恰有4件,求a,b,c的值.
(2)在(1)的条件下,将等级编辑为4的2件产品记为x1、x2,等级编辑为5的4件产品记为y1,y2,y3,y4,现从x1、x2,y1,y2,y3,y4,这6件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级编号恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+4,数列{an}是公差为d的等差数列,若a1=f(d-1),a3=f(d+1)
(1)求数列{an}的通项公式;
(2)sn为{an}的前n项和,求和:
1
s1
+
1
s2
+
1
s3
+…+
1
sn

查看答案和解析>>

同步练习册答案