精英家教网 > 高中数学 > 题目详情
已知点P是抛物线y2=4x上的一个动点,则点P到点(2,3)的距离与P到该抛物线准线的距离之和的最小值为(  )
分析:根据抛物线的定义,点P到点A(2,3)的距离与P到该抛物线准线的距离之和等于点P到点A(2,3)的距离与P到焦点F的距离之和,当且仅当三点A、P、F共线时,点P到点A(2,3)的距离与P到该抛物线准线的距离之和最小.
解答:解:抛物线y2=4x的焦点坐标为(1,0)
根据抛物线的定义,点P到点A(2,3)的距离与P到该抛物线准线的距离之和等于点P到点A(2,3)的距离与P到焦点F的距离之和,当且仅当三点A、P、F共线时,点P到点A(2,3)的距离与P到该抛物线准线的距离之和最小
此时,最小值为|AF|=
(2-1)2+32
=
10

故选B.
点评:本题考查抛物线的定义,考查求距离和,解题的关键是点P到点A(2,3)的距离与P到该抛物线准线的距离之和转化为点P到点A(2,3)的距离与P到焦点F的距离之和
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是抛物线y2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,|PA|+|PM|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点A(
7
2
,4)
,则|PA|+|PM|的最小值是(  )
A、5
B、
9
2
C、4
D、AD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,过点P作y轴垂线PM,垂足为M,点A的坐标是A(
7
2
,4)
,则|PA|+|PM|的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上动点,求P到直线l:x-y+6=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=2x上的动点,F是抛物线的焦点,若点A(3,2),则|PA|+|PF|的最小值是
7
2
7
2

查看答案和解析>>

同步练习册答案