精英家教网 > 高中数学 > 题目详情
15.若a>0,b>0,且a+b=1,则$\frac{2}{a}$+$\frac{2}{b}$的最小值为(  )
A.$\frac{1}{2}$B.2C.8D.16

分析 根据基本不等式即可求出.

解答 解:∵a+b≥2$\sqrt{ab}$,a+b=1
∴$\sqrt{ab}$≤$\frac{1}{2}$,当且仅当a=b=$\frac{1}{2}$取等号,
∴$\frac{1}{\sqrt{ab}}$≥2,
∴$\frac{2}{a}$+$\frac{2}{b}$≥2$\sqrt{\frac{4}{ab}}$=4×$\frac{1}{\sqrt{ab}}$≥4×2=8,
故选:C.

点评 本题考查了基本不等式的应用,关键是转化,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若x为区间[-6,6]内的任意一个实数,则样本7,5,x,3,4的平均数落在区间[4,5]内的概率为(  )
A.$\frac{1}{4}$B.$\frac{5}{12}$C.$\frac{7}{12}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公共汽车有A,B路路车,A路车每4分钟一班,B路车每6分钟一班,求满足下列条件的概率:
(1)一个乘客坐A路车时,候车时间不超过2分钟的概率;
(2)一位想乘A路汽车的乘客来到该站并盼望下一辆是A路车,试求下一辆是A路车的概率;
(3)在两分钟内有一辆汽车到达的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(1,1),2$\overrightarrow{a}$+$\overrightarrow{b}$=(4,2),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x|y=$\sqrt{2x{-x}^{2}}$.x∈N},B={x|y=ln(2-x)},则A∩B表示的集合为(  )
A.{1}B.{x|0≤x<2}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.三角形ABC中角A、B、C对边分别为a、b、c,且a=2,b=3,c=4.若长度为4的动线段PQ的中点恰为A点,则$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值是(  )
A.-$\frac{3}{2}$B.$\frac{11}{2}$C.$\frac{21}{2}$D.$\frac{29}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:|x-a|≤4,q:$\frac{1}{5x-{x}^{2}-6}$≥0,q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C丄侧面ABB1A1,AC=AA1=$\sqrt{2}$AB,∠AA1C1=60°,AB⊥AA1,H为棱CC1的中点,D在棱BB1上,且A1D丄平面AB1H.
(Ⅰ)求证:D为BB1的中点;
(Ⅱ)求二面角C1-A1D-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设m为不小于2的正整数,对任意n∈Z,若n=qm+r(其中q,r∈Z,且0≤r<m),则记fm(n)=r,如f2(3)=1,f3(8)=2,下列关于该映射fm:Z→Z的命题中,不正确的是(  )
A.若a,b∈Z,则fm(a+b)=fm(a)+fm(b)
B.若a,b,k∈Z,且fm(a)=fm(b),则fm(ka)=fm(kb)
C.若a,b,c,d∈Z,且fm(a)=fm(b),fm(c)=fm(d),则fm(a+c)=fm(b+d)
D.若a,b,c,d∈Z,且fm(a)=fm(b),fm(c)=fm(d),则fm(ac)=fm(bd)

查看答案和解析>>

同步练习册答案