精英家教网 > 高中数学 > 题目详情
7.已知p:|x-a|≤4,q:$\frac{1}{5x-{x}^{2}-6}$≥0,q是p的充分不必要条件,求实数a的取值范围.

分析 p:|x-a|≤4,解得a-4≤x≤a+4.q:$\frac{1}{5x-{x}^{2}-6}$≥0,化为x2-5x+6<0,解得x范围.再利用q是p的充分不必要条件即可得出.

解答 解:p:|x-a|≤4,解得a-4≤x≤a+4.
q:$\frac{1}{5x-{x}^{2}-6}$≥0,∴5x-x2-6>0,化为x2-5x+6<0,解得2<x<3.
∵q是p的充分不必要条件,
∴$\left\{\begin{array}{l}{a-4≤2}\\{3≤a+4}\end{array}\right.$,解得-1≤a≤6.
∴实数a的取值范围是[-1,6].

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{x-2}{2x-1}$(x≠$\frac{1}{2}$)的反函数是(  )
A.y=$\frac{2x-1}{x+2}$(x≠-2)B.y=$\frac{x-2}{2x-1}$(x≠$\frac{1}{2}$)C.y=$\frac{x+1}{2x-1}$(x≠$\frac{1}{2}$)D.y=$\frac{2x-1}{x-2}$(x≠2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα+sinβ=$\frac{\sqrt{2}}{2}$,求cosα+cosβ的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a>0,b>0,且a+b=1,则$\frac{2}{a}$+$\frac{2}{b}$的最小值为(  )
A.$\frac{1}{2}$B.2C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果点P(x,y)在圆(x-3)2+(y+4)2=25上,则x-y的最大值是(  )
A.10B.12C.5+3$\sqrt{2}$D.7+5$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中a1=1,Sn=4an-1+2,
(1)求a2,a3
(2)设bn=an+1-2an,求数列{bn}的通项公式bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD为棱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)设点M是线段PC上的一点,PM=t PC,且PA∥平面MQB.
(ⅰ)求实数t的值;
(ⅱ)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为24.(参考数据:sin15°=0.2588,sin7.5°=0.1305)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.2016年1月1日我国全面二孩政策实施后,某中学的一个学生社团组织了一项关于生育二孩意愿的调查活动.已知该中学所在的城镇符合二孩政策的已婚女性中,30岁以下的约2400人,30岁至40岁的约3600人,40岁以上的约6000人.为了解不同年龄层的女性对生育二孩的意愿是否存在显著差异,该社团用分层抽样的方法从中抽取了一个容量为N的样本进行调查,已知从30岁至40岁的女性中抽取的人数为60人,则N=200.

查看答案和解析>>

同步练习册答案