精英家教网 > 高中数学 > 题目详情
12.已知数列{an}中a1=1,Sn=4an-1+2,
(1)求a2,a3
(2)设bn=an+1-2an,求数列{bn}的通项公式bn

分析 (1)由a1=1,Sn=4an-1+2代入可得a2=5,a3=16;
(2)当n≥2时,Sn+1=4an+2,Sn=4an-1+2,从而可得an+1-2an=2(an-2an-1),从而求通项公式.

解答 解:(1)∵a1=1,Sn=4an-1+2,
∴a2+1=4×1+2,
∴a2=5,
∴a3+6=4×5+2,
∴a3=16;
(2)当n≥2时,Sn+1=4an+2,Sn=4an-1+2,
两式作差可得,
an+1=4an-4an-1
故an+1-2an=2(an-2an-1),
又∵bn=an+1-2an
∴bn=2bn-1
又∵b1=a2-2a1=3,b2=a3-2a2=6,
∴数列{bn}是以3为首项,2为公比的等比数列;
∴bn=3•2n-1

点评 本题考查了递推法的应用及构造法的应用,同时考查了等比数列的判断与性质应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求下列函数的n阶导数.
(1)y=xn;           
(2)y=eax

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(1,1),2$\overrightarrow{a}$+$\overrightarrow{b}$=(4,2),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.三角形ABC中角A、B、C对边分别为a、b、c,且a=2,b=3,c=4.若长度为4的动线段PQ的中点恰为A点,则$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值是(  )
A.-$\frac{3}{2}$B.$\frac{11}{2}$C.$\frac{21}{2}$D.$\frac{29}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:|x-a|≤4,q:$\frac{1}{5x-{x}^{2}-6}$≥0,q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若x在第三象限,化简$\sqrt{{(1+tanx)}^{2}{+(1-tanx)}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C丄侧面ABB1A1,AC=AA1=$\sqrt{2}$AB,∠AA1C1=60°,AB⊥AA1,H为棱CC1的中点,D在棱BB1上,且A1D丄平面AB1H.
(Ⅰ)求证:D为BB1的中点;
(Ⅱ)求二面角C1-A1D-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=i(-1+3i)在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在公差不为零的等差数列{an}中,其前n项和为Sn,已知a3=5,且a1,a2,a5成等比数列.
(Ⅰ)求an和Sn
(Ⅱ)记${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{a{\;}_2{a_3}}}+…\frac{1}{{{a_n}{a_{n+1}}}}$,若${T_n}≥\frac{9}{{{S_{n+k}}}}$对任意正整数n恒成立,求正整数k的最小值.

查看答案和解析>>

同步练习册答案