4£®ÔÚ¹«²î²»ÎªÁãµÄµÈ²îÊýÁÐ{an}ÖУ¬ÆäǰnÏîºÍΪSn£¬ÒÑÖªa3=5£¬ÇÒa1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ®
£¨¢ñ£©ÇóanºÍSn£»
£¨¢ò£©¼Ç${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{a{\;}_2{a_3}}}+¡­\frac{1}{{{a_n}{a_{n+1}}}}$£¬Èô${T_n}¡Ý\frac{9}{{{S_{n+k}}}}$¶ÔÈÎÒâÕýÕûÊýnºã³ÉÁ¢£¬ÇóÕýÕûÊýkµÄ×îСֵ£®

·ÖÎö £¨¢ñ£©Éè{an}µÄ¹«²îΪd£¬ÔËÓõȲîÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½£¬½áºÏµÈ±ÈÊýÁеÄÖÐÏîµÄÐÔÖÊ£¬½â·½³Ì¿ÉµÃÊ×ÏîºÍ¹«²î£¬½ø¶øµÃµ½ËùÇó£»
£¨¢ò£©ÇóµÃ$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}$£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©£¬ÔËÓÃÁÑÏîÏàÏûÇóºÍ¿ÉµÃTn£¬ÔËÓòÎÊý·ÖÀëºÍÊýÁеĵ¥µ÷ÐÔ£¬¿ÉµÃ×îСֵ£¬¼´¿ÉµÃµ½ÕýÕûÊýkµÄ×îСֵ£®

½â´ð ½â£º£¨¢ñ£©Éè{an}µÄ¹«²îΪd£¬
ÓÉa3=5£¬ÇÒa1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ¬
¿ÉµÃa22=a1a5£¬
Ôò$\left\{\begin{array}{l}{a_1}+2d=5\\{£¨{a_1}+d£©^2}={a_1}£¨{a_1}+4d£©\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{a_1}=1\\ d=2\end{array}\right.$£¬
¡àan=2n-1£¬Sn=$\frac{1}{2}$£¨1+2n-1£©n£¬
¿ÉµÃ${S_n}={n^2}$£»
£¨¢ò£©$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨2n-1£©£¨2n+1£©}$=$\frac{1}{2}$£¨$\frac{1}{2n-1}$-$\frac{1}{2n+1}$£©£¬
${T_n}=\frac{1}{2}£¨1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+¡­+\frac{1}{2n-1}-\frac{1}{2n+1}£©=\frac{n}{2n+1}$£¬
¡à$\frac{n}{2n+1}¡Ý\frac{9}{{{{£¨n+k£©}^2}}}$£¬
¡à${£¨n+k£©^2}¡Ý9£¨2+\frac{1}{n}£©$ºã³ÉÁ¢£¬
¡à$k¡Ý3\sqrt{2+\frac{1}{n}}-n$£¬
$¼Ç{c_n}=3\sqrt{2+\frac{1}{n}}-n$£¬Ôò{cn}ÊǵݼõÊýÁУ¬
¡à$k¡Ý{c_1}=3\sqrt{3}-1$£¬
¡àkmin=5£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½µÄÔËÓ㬿¼²éµÈ±ÈÊýÁеÄÖÐÏîµÄÐÔÖÊ£¬ÒÔ¼°ÊýÁеÄÇóºÍ·½·¨£ºÁÑÏîÏàÏûÇóºÍ£¬Í¬Ê±¿¼²é²»µÈʽºã³ÉÁ¢ÎÊÌâµÄ½â·¨£¬×¢ÒâÔËÓ÷ÖÀë²ÎÊýºÍÊýÁеĵ¥µ÷ÐÔ£¬ÇóµÃ×îÖµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÊýÁÐ{an}ÖÐa1=1£¬Sn=4an-1+2£¬
£¨1£©Çóa2£¬a3£»
£¨2£©Éèbn=an+1-2an£¬ÇóÊýÁÐ{bn}µÄͨÏʽbn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªm£¬nΪÕýʵÊý£¬ÏòÁ¿$\overrightarrow{a}$=£¨m£¬1£©£¬$\overrightarrow{b}$=£¨1-n£¬1£©£¬Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Ôò$\frac{1}{m}$+$\frac{2}{n}$µÄ×îСֵΪ3+2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªF1£¬F2·Ö±ðÊÇÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬PΪÍÖÔ²ÉϵÄÒ»µã£¬Èô¡ÏF1PF2=90¡ã£¬ÇÒ¡÷F1PF2µÄÈý±ß³¤³ÉµÈ²îÊýÁУ¬ÔòÍÖÔ²µÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{7}$B£®$\frac{3}{7}$C£®$\frac{4}{7}$D£®$\frac{5}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®2016Äê1ÔÂ1ÈÕÎÒ¹úÈ«Ãæ¶þº¢Õþ²ßʵʩºó£¬Ä³ÖÐѧµÄÒ»¸öѧÉúÉçÍÅ×éÖ¯ÁËÒ»Ïî¹ØÓÚÉúÓý¶þº¢ÒâÔ¸µÄµ÷²é»î¶¯£®ÒÑÖª¸ÃÖÐѧËùÔڵijÇÕò·ûºÏ¶þº¢Õþ²ßµÄÒÑ»éÅ®ÐÔÖУ¬30ËêÒÔϵÄÔ¼2400ÈË£¬30ËêÖÁ40ËêµÄÔ¼3600ÈË£¬40ËêÒÔÉϵÄÔ¼6000ÈË£®ÎªÁ˽ⲻͬÄêÁä²ãµÄÅ®ÐÔ¶ÔÉúÓý¶þº¢µÄÒâÔ¸ÊÇ·ñ´æÔÚÏÔÖø²îÒ죬¸ÃÉçÍÅÓ÷ֲã³éÑùµÄ·½·¨´ÓÖгéÈ¡ÁËÒ»¸öÈÝÁ¿ÎªNµÄÑù±¾½øÐе÷²é£¬ÒÑÖª´Ó30ËêÖÁ40ËêµÄÅ®ÐÔÖгéÈ¡µÄÈËÊýΪ60ÈË£¬ÔòN=200£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öSµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{{{2^{99}}-2}}{3}$B£®$\frac{{{2^{100}}-2}}{3}$C£®$\frac{{{2^{101}}-2}}{3}$D£®$\frac{{{2^{102}}-2}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½â²»µÈʽ£º|x-2|+x|x+2|£¾2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®µãP£¨x£¬y£©ÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉϵÄÈÎÒâÒ»µã£¬F1£¬F2ÊÇÍÖÔ²µÄÁ½¸ö½¹µã£¬ÇÒ¡ÏF1PF2¡Ü120¡ã£¬Ôò¸ÃÍÖÔ²µÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{3}}}{4}$B£®$\frac{1}{2}$C£®$\frac{{\sqrt{2}}}{2}$D£®$\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®iÊÇÐéÊýµ¥Î»£¬¼ÆËã$\frac{3i}{1-i}$=£¨¡¡¡¡£©
A£®$-\frac{3}{2}+\frac{3}{2}i$B£®$-\frac{3}{2}-\frac{3}{2}i$C£®$-\frac{3}{2}+3i$D£®$-\frac{3}{2}-3i$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸